Совершение работы в физике примеры. Механическая работа. Мощность (Зотов А.Е.)

Пусть тело, на которое действует сила , проходит, двигаясь по некоторой траектории, путь s. При этом сила либо изменяет скорость тела, сообщая ему ускорение, либо компенсирует действие другой силы (или сил), противодействующей движению. Действие на пути s характеризуется величиной, которая называется работой.

Механической работой называется скалярная величина, равная произведению проекции силы на направление перемещения Fs и пути s, проходимого точкой приложения силы (рис. 22):

A = Fs*s. (56)

Выражение (56) справедливо в том случае, если величина проекции силы Fs на направление перемещения (т. е. на направление скорости) остается все время неизменной. В частности, это имеет место, когда тело движется прямолинейно и постоянная по величине сила образует с направлением движения постоянный угол α. Поскольку Fs = F * cos(α), выражению (47) можно придать следующий вид:

A = F * s * cos(α).

Если – вектор перемещения, то работа вычисляется как скалярное произведение двух векторов и :

. (57)

Работа - алгебраическая величина. Если сила и направление перемещения образуют острый угол (cos(α) > 0), работа положительна. Если угол α - тупой (cos(α) < 0), работа отрицательна. При α = π/2 работа равна нулю. Последнее обстоятельство особенно отчетливо показывает, что понятие работы в механике существенно отличается от обыденного представления о работе. В обыденном понимании всякое усилие, в частности и мускульное напряжение, всегда сопровождается совершением работы. Например, для того чтобы держать тяжелый груз, стоя неподвижно, а тем более для того, чтобы перенести этот груз по горизонтальному пути, носильщик затрачивает много усилий, т. е. «совершает работу». Однако это – «физиологическая» работа. Механическая работа в этих случаях равна нулю.

Работа при перемещении под действием силы

Если величина проекции силы на направление перемещения не остается постоянной во время движения, то работа выражается в виде интеграла:

. (58)

Интеграл такого вида в математике называются криволинейным интегралом вдоль траектории S. Аргументом здесь служит векторная переменная , которая может меняться как по модулю, так и по направлению. Под знаком интеграла стоит скалярное произведение вектора силы и вектора элементарного перемещения .

За единицу работы принимается работа, совершаемая силой, равной единице и действующей в направлении перемещения, на пути, равном единице. В СИ единицей работы является джоуль (Дж), который равен работе, совершаемой силой в 1 ньютон на пути в 1 метр:

1Дж = 1Н * 1м.


В СГС единицей работы является эрг, равный работе, совершаемой силой в 1 дину на пути в 1 сантиметр. 1Дж = 10 7 эрг.

Иногда применяется внесистемная единица килограммометр (кГ*м). Это работа, совершаемая силой в 1 кГ на пути в 1 метр. 1кГ*м = 9,81 Дж.

1. Механическая работа ​\(A \) ​ - физическая величина, равная произведению вектора силы, действующей на тело, и вектора его перемещения: ​\(A=\vec{F}\vec{S} \) ​. Работа - скалярная величина, характеризуется числовым значением и единицей.

За единицу работы принимают 1 джоуль (1 Дж). Это такая работа, которую совершает сила 1 Н на пути 1 м.

\[ [\,A\,]=[\,F\,][\,S\,]; [\,A\,]=1Н\cdot1м=1Дж \]

2. Если сила, действующая на тело, составляет некоторый угол ​\(\alpha \) ​ с перемещением, то проекция силы ​\(F \) ​ на ось X равна ​\(F_x \) ​ (рис. 42).

Поскольку ​\(F_x=F\cdot\cos\alpha \) ​, то \(A=FS\cos\alpha \) .

Таким образом, работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.

3. Если сила ​\(F \) ​ = 0 или перемещение ​\(S \) ​ = 0, то механическая работа равна нулю ​\(A \) ​ = 0. Работа равна нулю, если вектор силы перпендикулярен вектору перемещения, т.е. ​\(\cos90^\circ \) ​ = 0. Так, нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта сила перпендикулярна направлению движения тела в любой точке траектории.

4. Работа силы можетбыть как положительной, так и отрицательной. Работа положительная ​\(A \) ​ > 0, если угол 90° > ​\(\alpha \) ​ ≥ 0°; если угол 180° > ​\(\alpha \) ​ ≥ 90°, то работа отрицательная ​\(A \) ​ < 0.

Если угол ​\(\alpha \) ​ = 0°, то ​\(\cos\alpha \) ​ = 1, ​\(A=FS \) ​. Если угол ​\(\alpha \) ​ = 180°, то ​\(\cos\alpha \) ​ = -1, ​\(A=-FS \) ​.

5. При свободном падении с высоты ​\(h \) ​ тело массой ​\(m \) ​ перемещается из положения 1 в положение 2 (рис. 43). При этом сила тяжести совершает работу, равную:

\[ A=F_тh=mg(h_1-h_2)=mgh \]

​При движении тела вертикально вниз сила и перемещение направлены в одну сторону, и сила тяжести совершает положительную работу.

Если тело поднимается вверх, то сила тяжести направлена вниз, а перемещение вверх, то сила тяжести совершает отрицательную работу, т.е.

\[ A=-F_тh=-mg(h_1-h_2)=-mgh \]

6. Работу можно представить графически. На рисунке изображён график зависимости силы тяжести от высоты тела относительно поверхности Земли (рис. 44). Графически работа силы тяжести равна площади фигуры (прямоугольника), ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс
в точке ​\(h \) ​.

Графиком зависимости силы упругости от удлинения пружины является прямая, проходящая через начало координат (рис. 45). По аналогии с работой силы тяжести работа силы упругости равна площади треугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке ​\(x \) ​.
​\(A=Fx/2=kx\cdot x/2 \) ​.

7. Работа силы тяжести не зависит от формы траектории, по которой перемещается тело; она зависит от начального и конечного положений тела. Пусть тело сначала перемещается из точки А в точку В по траектории АВ (рис. 46). Работа силы тяжести в этом случае

\[ A_{AB}=mgh \]

Пусть теперь тело движется из точки А в точку В сначала вдоль наклонной плоскости АС, затем вдоль основания наклонной плоскости ВС. Работа силы тяжести при перемещении по ВС равна нулю. Работа силы тяжести при перемещении по АС равна произведению проекции силы тяжести на наклонную плоскость ​\(mg\sin\alpha \) ​ и длины наклонной плоскости, т.е. ​\(A_{AC}=mg\sin\alpha\cdot l \) ​. Произведение ​\(l\cdot\sin\alpha=h \) ​. Тогда \(A_{AC}=mgh \) . Работа силы тяжести при перемещении тела по двум различным траекториям не зависит от формы траектории, а зависит от начального и конечного положений тела.

Работа силы упругости также не зависит от формы траектории.

Предположим, что тело перемещается из точки А в точку В по траектории АСВ, а затем из точки В в точку А по траектории ВА. При движении по траектории АСВ сила тяжести совершает положительную работу, при движении по траектории В А работа силы тяжести отрицательна, равная по модулю работе при движении по траектории АСВ. Следовательно работа силы тяжести по замкнутой траектории равна нулю. То же относится и к работе силы упругости.

Силы, работа которых не зависит от формы траектории и по замкнутой траектории равна нулю, называют консервативными. К консервативным силам относятся сила тяжести и сила упругости.

8. Силы, работа которых зависит от формы пути, называют неконсервативными. Неконсервативной является сила трения. Если тело перемещается из точки А в точку В (рис. 47) сначала по прямой, а затем по ломаной линии АСВ, то в первом случае работа силы трения ​\(A_{AB}=-Fl_{AB} \) ​, а во втором ​\(A_{ABC}=A_{AC}+A_{CB} \) ​, \(A_{ABC}=-Fl_{AC}-Fl_{CB} \) .

Следовательно, работа ​\(A_{AB} \) ​ не равна работе ​\(A_{ABC} \) ​.

9. Мощностью называется физическая величина, равная отношению работы к промежутку времени, за который она совершена. Мощность характеризует быстроту совершения работы.

Мощность обозначается буквой ​\(N \) ​.

Единица мощности: ​\([N]=[A]/[t] \) ​. ​\([N] \) ​ = 1 Дж/1 с = 1 Дж/с. Эта единица называется ватт (Вт). Один ватт - такая мощность, при которой работа 1 Дж совершается за 1 с.

10. Мощность, развиваемая двигателем, равна: ​\(N = A/t \) ​, ​\(A=F\cdot S \) ​, откуда ​\(N=FS/t \) ​. Отношение перемещения ко времени представляет собой скорость движения: ​\(S/t = v \) ​. Откуда ​\(N = Fv \) ​.

Из полученной формулы видно, что при постоянной силе сопротивления скорость движения прямо пропорциональна мощности двигателя.

В различных машинах и механизмах происходит преобразование механической энергии. За счёт энергии при её преобразовании совершается работа. При этом на совершение полезной работы расходуется только часть энергии. Некоторая часть энергии тратится на совершение работы против сил трения. Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно. Эта величина называется коэффициентом полезного действия (КПД) .

Коэффициентом полезного действия называют величину, равную отношению полезной работы ​\((A_п) \) ​ ко всей совершённой работе \((A_с) \) : ​\(\eta=A_п/A_с \) ​. Выражают КПД в процентах.

Часть 1

1. Работа определяется по формуле

1) ​\(A=Fv \) ​
2) \(A=N/t \) ​
3) \(A=mv \) ​
4) \(A=FS \) ​

2. Груз равномерно поднимают вертикально вверх за привязанную к нему верёвку. Работа силы тяжести в этом случае

1) равна нулю
2) положительная
3) отрицательная
4) больше работы силы упругости

3. Ящик тянут за привязанную к нему верёвку, составляющую угол 60° с горизонтом, прикладывая силу 30 Н. Какова работа этой силы, если модуль перемещения равен 10 м?

1) 300 Дж
2) 150 Дж
3) 3 Дж
4) 1,5 Дж

4. Искусственный спутник Земли, масса которого равна ​\(m \) ​, равномерно движется по круговой орбите радиусом ​\(R \) ​. Работа, совершаемая силой тяжести за время, равное периоду обращения, равна

1) ​\(mgR \) ​
2) ​\(\pi mgR \) ​
3) \(2\pi mgR \) ​
4) ​\(0 \) ​

5. Автомобиль массой 1,2 т проехал 800 м по горизонтальной дороге. Какая работа была совершена при этом силой трения, если коэффициент трения 0,1?

1) -960 кДж
2) -96 кДж
3) 960 кДж
4) 96 кДж

6. Пружину жёсткостью 200 Н/м растянули на 5 см. Какую работу совершит сила упругости при возвращении пружины в состояние равновесия?

1) 0,25 Дж
2) 5 Дж
3) 250 Дж
4) 500 Дж

7. Шарики одинаковой массы скатываются с горки по трём разным желобам, как показано на рисунке. В каком случае работа силы тяжести будет наибольшей?

1) 1
2) 2
3) 3
4) работа во всех случаях одинакова

8. Работа по замкнутой траектории равна нулю

А. Силы трения
Б. Силы упругости

Верным является ответ

1) и А, и Б
2) только А
3) только Б
4) ни А, ни Б

9. Единицей мощности в СИ является

1) Дж
2) Вт
3) Дж·с
4) Н·м

10. Чему равна полезная работа, если совершённая работа составляет 1000 Дж, а КПД двигателя 40 %?

1) 40000 Дж
2) 1000 Дж
3) 400 Дж
4) 25 Дж

11. Установите соответствие между работой силы (в левом столбце таблицы) и знаком работы (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквами.

РАБОТА СИЛЫ
A. Работа силы упругости при растяжении пружины
Б. Работа силы трения
B. Работа силы тяжести при падении тела

ЗНАК РАБОТЫ
1) положительная
2) отрицательная
3) равна нулю

12. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Работа силы тяжести не зависит от формы траектории.
2) Работа совершается при любом перемещении тела.
3) Работа силы трения скольжения всегда отрицательна.
4) Работа силы упругости по замкнутому контуру не равна нулю.
5) Работа силы трения не зависит от формы траектории.

Часть 2

13. Лебёдка равномерно поднимает груз массой 300 кг на высоту 3 м за 10 с. Какова мощность лебёдки?

Ответы

Знают все. Даже дети работают, в детском садике - малышами. Однако общепринятое, бытовое представление далеко не то же самое, что понятие механическая работа в физике. Вот, например, человек стоит и держит в руках сумку. В обычном понимании он выполняет работу, удерживая груз. Однако с точки зрения физики ничего подобного он не совершает. В чем тут дело?

Раз появляются такие вопросы, самое время вспомнить определение. Когда на предмет действует сила, и под ее действием тело перемещается, то выполняется механическая работа. Эта величина пропорциональна пройденному телом пути и приложенной силе. Существует еще дополнительная зависимость от направления приложения силы и направления движения тела.

Таким образом, мы ввели такое понятие как механическая работа. Физика определяет ее как произведение величины силы и перемещения, умноженное на значение косинуса угла, имеющегося в самом общем случае между ними. В качестве примера можно рассмотреть несколько случаев, которые позволят лучше узнать, что под этим понимается.

Когда механическая работа не совершается? Стоит грузовик, мы его толкаем, а он не движется. Сила приложена, а перемещения нет. Совершаемая работа равно нулю. А вот другой пример - мама везет ребенка в коляске, в этом случае работа совершается, приложена сила, коляска перемещается. Разница в двух описанных случаях в наличии перемещения. И соответственно, работа выполняется (пример с коляской) или не выполняется (пример с грузовиком).

Другой случай - мальчик на велосипеде разогнался и спокойно катится по дорожке, педали не крутит. Работа выполняется? Нет, хотя перемещение есть, но нет приложенной силы, движение осуществляется по инерции.

Еще один пример - лошадь везет телегу, на ней сидит возница. Совершает ли он работу? Перемещение есть, приложенная сила есть (вес возницы воздействует на телегу), а вот работа не выполняется. Угол между направлением перемещения и направлением действия силы составляет 90 градусов, а косинус угла 90° равен нулю.

Приведенные примеры позволяют понять, что механическая работа - это не просто произведение двух величин. Оно должно также учитывать, как эти величины направлены. Если направление перемещения и направление действия силы совпадают, то результат будет положительным, если направление перемещения происходит против направления приложения силы, то результат будет отрицательным (например, работа, совершаемая силой трения при перемещении груза).

Кроме того, необходимо учесть, что действующая на тело сила может быть результирующей нескольких сил. Если это так, то работа всех приложенных к телу сил равна работе, совершаемой результирующей силой. Работа измеряется в джоулях. Один джоуль равен работе, которую совершает сила в один ньютон при передвижении тела на один метр.

Из рассмотренных примеров можно сделать крайне любопытный вывод. Когда мы рассматривали возницу на телеге, то определили, что он не совершает работу. Работа совершается в горизонтальной плоскости, потому что именно там производится перемещение. Но ситуация немного изменится, когда мы будем рассматривать пешехода.

При ходьбе центр тяжести человека не остается неподвижным, он движется в вертикальной плоскости и, значит, совершает работу. А так как движение направлено против то работа будет происходить против направления действия Пусть перемещение и небольшое, но при длительной ходьбе организму придется совершать дополнительную работу. Так что правильная походка сокращает эту лишнюю работу и уменьшает утомляемость.

Проанализировав нескольких простых жизненных ситуаций, выбранных в качестве примеров, и воспользовавшись знанием о том, что такое механическая работа, мы рассмотрели основные ситуации ее проявления, а также когда и какая работа выполняется. Определили, что такое понятие как работа в быту и в физике носит разный характер. И установили с помощью применения физических законов, что неправильная походка вызывает дополнительную утомляемость.

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа - это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 - 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай - когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай - когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай - когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт - это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 - 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.