Уравнение взаимодействия металлов с неметаллами. Химические свойства металлов с примерами

Общие свойства металлов.

Наличие слабо связанных с ядром валентных электронов обуславливает общие химические свойства металлов. В химических реакциях они всегда выступают в роли восстановителя, простые вещества металлы никогда не проявляют окислительных свойств.

Получение металлов:
- восстановление из оксидов углеродом (С), угарным газом (СО), водородом (Н2) или более активным металлом (Al, Ca, Mg);
- восстановление из растворов солей более активным металлом;
- электролиз растворов или расплавов соединений металлов - восстановление наиболее активных металлов (щелочных, щелочноземельных металлов и алюминия) с помощью электрического тока.

В природе металлы встречаются преимущественно в виде соединений, только малоактивные металлы встречаются в виде простых веществ (самородные металлы).

Химические свойства металлов.
1. Взаимодействие с простыми веществами неметаллами:
Большинство металлов могут быть окислены такими неметаллами как галогены, кислород, сера, азот. Но для начала большинства таких реакций требуется предварительное нагревание. В дальнейшем реакция может идти с выделением большого количества тепла, что приводит к воспламенению металла.
При комнатной температуре возможны реакции только между самыми активными металлами (щелочными и щелочноземельными) и самыми активными неметаллами (галогенами, кислородом). Щелочные металлы (Na, K) в реакции с кислородом образуют пероксиды и надпероксиды (Na2O2, KO2).

а) взаимодействие металлов с водой.
При комнатной температуре с водой взаимодействуют щелочные и щелочноземельные металлы. В результате реакции замещения образуются щёлочь (растворимое основание) и водород: Металл + Н2О = Ме(ОН) + Н2
При нагревании с водой взаимодействуют остальные металлы, стоящие в ряду активности левее водорода. Магний реагирует с кипящей водой, алюминий - после специальной обработки поверхности, в результате образуются нерастворимые основания - гидроксид магния или гидроксид алюминия - и выделяется водород. Металлы, находящиеся в ряду активности от цинка (включительно) до свинца (включительно) взаимодействуют с парами воды (т.е. выше 100 С), при этом образуются оксиды соответствующих металлов и водород.
Металлы, стоящие в ряду активности правее водорода, с водой не взаимодействуют.
б) взаимодействие с оксидами:
активные металлы взаимодействуют по реакции замещения с оксидами других металлов или неметаллов, восстанавливая их до простых веществ.
в) взаимодействие с кислотами:
Металлы, расположенные в ряду активности левее водорода, вступают в реакцию с кислотами с выделением водорода и образованием соответствующей соли. Металлы, стоящие в ряду активности правее водорода, с растворами кислот не взаимодействуют.
Особое место занимают реакции металлов с азотной и концентрированной серной кислотами. Все металлы, кроме благородных (золото, платина), могут быть окислены этими кислотами-окислителями. В результате этих реакций всегда будут образовываться соответствующие соли, вода и продукт восстановления азота или серы соответственно.
г) с щелочами
Металлы, образующие амфотерные соединения (алюминий, бериллий, цинк), способны реагировать с расплавами (при этом образуются средние соли алюминаты, бериллаты или цинкаты) или растворами щелочей (при этом образуются соответствующие комплексные соли). Во всех реакциях будет выделяться водород.
д) В соответствии с положением металла в ряду активности возможны реакции восстановления (вытеснения) менее активного металла из раствора его соли другим более активным металлом. В результате реакции образуется соль более активного и простое вещество - менее активный металл.

Общие свойства неметаллов.

Неметаллов намного меньше, чем металлов (22 элемента). Однако химия неметаллов гораздо сложнее за счёт большей заполненности внешнего энергетического уровня их атомов.
Физические свойства неметаллов более разнообразны: среди них есть газообразные (фтор, хлор, кислород, азот, водород), жидкости (бром) и твёрдые вещества, сильно отличающиеся друг от друга по температуре плавления. Большинство неметаллов не проводят электрический ток, но кремний, графит, германий обладают полупроводниковыми свойствами.
Газообразные, жидкие и некоторые твёрдые неметаллы (йод) имеют молекулярное строение кристаллической решётки, остальные неметаллы обладают атомной кристаллической решёткой.
Фтор, хлор, бром, йод, кислород, азот и водород в обычных условиях существуют в виде двухатомных молекул.
Многие элементы-неметаллы образуют несколько аллотропных модификаций простых веществ. Так кислород имеет две аллотропные модификации - кислород О2 и озон О3, сера имеет три аллотропные модификации - ромбическую, пластическую и моноклинную серу, фосфор имеет три аллотропные модификации - красный, белый и чёрный фосфор, углерод - шесть аллотропных модификаций - сажа, графит, алмаз, карбин, фуллерен, графен.

В отличие от металлов, проявляющих только восстановительные свойства, неметаллы в реакциях с простыми и сложными веществами могут выступать как в роли восстановителя, так и в роли окислителя. Согласно своей активности неметаллы занимают определённое место в ряду электроотрицательности. Самым активным неметаллом считается фтор. Он проявляет только окислительные свойства. На втором месте по активности - кислород, на третьем - азот, далее галогены и остальные неметаллы. Наименьшей электроотрицательностью среди неметаллов обладает водород.

Химические свойства неметаллов.

1. Взаимодействие с простыми веществами:
Неметаллы взаимодействуют с металлами. В таких реакция металлы выступают в роли восстановителя, неметаллы - в роли окислителя. В результате реакции соединения образуются бинарные соединения - оксиды, пероксиды, нитриды, гидриды, соли бескислородных кислот.
В реакциях неметаллов между собой более электроотрицательный неметалл проявляет свойства окислителя, менее электроотрицательный - свойства восстановителя. В результате реакции соединения образуются бинарные соединения. Необходимо помнить, что неметаллы могут проявлять переменные степени окисления в своих соединениях.
2. Взаимодействие со сложными веществами:
а) с водой:
В обычных условиях с водой взаимодействуют только галогены.
б) с оксидами металлов и неметаллов:
Многие неметаллы могут реагировать при высоких температурах с оксидами других неметаллов, восстанавливая их до простых веществ. Неметаллы, стоящие в ряду электроотрицательности левее серы, могут взаимодействовать и с оксидами металлов, восстанавливая металлы до простых веществ.
в) с кислотами:
Некоторые неметаллы могут быть окислены концентрированными серной или азотной кислотами.
г) со щелочами:
Под действием щелочей некоторые неметаллы могут подвергаться дисмутации, являясь одновременно и окислителем и восстановителем.
Например в реакции галогенов с растворами щелочей без нагревания: Cl2 + 2NaOH = NaCl + NaClO + H2O или при нагревании: 3Cl2 + 6NaOH = 5NaCl + NaClO3 + 3H2O.
д) с солями:
При взаимодействии, являющимися сильными окислителями, проявляют восстановительные свойства.
Галогены (кроме фтора) вступают в реакции замещения с растворами солей галогеноводородных кислот: более активный галоген вытесняет из раствора соли менее активный галоген.

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично - р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

Ме - ne = Me n +

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом .

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды .

Например :

Ca + H 2 = CaH 2

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

2Na + O 2 = Na 2 O 2 (пероксид)

4K + O 2 = 2K 2 O

2Mg + O 2 = 2MgO

2Cu + O 2 = 2CuO

в) Взаимодействие металлов с галогенами .

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

2Al + 3Br 2 = 2AlBr 3

В основном это ионные соединения: MeHal n

г) Взаимодействие металлов с азотом .

С азотом взаимодействуют щелочные и щелочноземельные металлы.

Пример :

3Ca + N 2 = Ca 3 N 2

Mg + N 2 = Mg 3 N 2 - нитрид.

д) Взаимодействие металлов с углеродом .

Соединения металлов и углерода - карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

4Al + 3C = Al 4 C 3

Металлы - d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC - используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Na + 2H 2 O = H 2 + 2NaOH

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Zn + CuSO 4 = Cu 0 ↓ + ZnSO 4

0,76 B., = + 0,34 B.

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

Пример :

Zn + 2NaOH + 2H 2 O = Na 2 + H 2


1 Zn 0 + 4OH - - 2e = 2- окисление

Zn 0 - восстановитель

1 2H 2 O + 2e = H 2 + 2OH - восстановление

H 2 O - окислитель

Zn + 4OH - + 2H 2 O = 2- + 2OH - + H 2

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

4Nb +5O 2 +12KOH = 4K 3 NbO 4 + 6H 2 O

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа - кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H 2 SO 4(разб.) , H 3 PO 4 , H 2 S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H 2 ). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа - кислоты, обладающие высокой окислительной способностью: H 2 SO 4(конц.) , HNO 3(разб.) , HNO 3(конц.) . В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H 2 S - c активными металлами

H 2 SO 4 +6е S 0 ↓ - с металлами средней активности

SO 2 - c малоактивными металлами

NH 3 (NH 4 NO 3)- c активными металлами

HNO 3 +4,5e N 2 O, N 2 - с металлами средней активности

NO - c малоактивными металлами

HNO 3(конц.) - NO 2 - c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы - степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства.

При большом многообразии все химические реакции металлов относятся к окислительно-восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.

В общем виде это можно выразить схемой:
Ме 0 – ne → Me +n ,
где Ме – металл – простое вещество, а Ме 0+n – металл химический элемент в соединении.

Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами – простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.

При высоких температурах большинство металлов сгорает в кислороде:

2Mg + O 2 = 2MgO

Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.

С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:

2Al + 3Br 2 = 2AlBr 3

При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:

Ме + HOH → Me(OH) n + H 2

Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.

Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:

Me + nH + → Me n + + H 2

Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.

При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего – более активного металла переходят к ионам замещаемого – менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.

В порядке убывания химической активности, проявляемой в реакциях вытеснения металлов друг друга из водных растворов их солей, металлы располагаются в электрохимическом ряду напряжений (активности) металлов:

Li → Rb → K → Ba → Sr → Ca → Na→ Mg → Al → Mn → Zn → Cr → → Fe → Cd→ Co → Ni → Sn → Pb → H → Sb → Bi → Cu → Hg → Ag → Pd → Pt → Au

Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.

В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство - образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:

Zn + 2 HCl = ZnCl 2 + H 2 + Q

Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства.

При большом многообразии все химические реакции металлов относятся к окислительно-восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.

В общем виде это можно выразить схемой:
Ме 0 – ne → Me +n ,
где Ме – металл – простое вещество, а Ме 0+n – металл химический элемент в соединении.

Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами – простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.

При высоких температурах большинство металлов сгорает в кислороде:

2Mg + O 2 = 2MgO

Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.

С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:

2Al + 3Br 2 = 2AlBr 3

При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:

Ме + HOH → Me(OH) n + H 2

Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.

Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:

Me + nH + → Me n + + H 2

Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.

При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего – более активного металла переходят к ионам замещаемого – менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.

В порядке убывания химической активности, проявляемой в реакциях вытеснения металлов друг друга из водных растворов их солей, металлы располагаются в электрохимическом ряду напряжений (активности) металлов:

Li → Rb → K → Ba → Sr → Ca → Na→ Mg → Al → Mn → Zn → Cr → → Fe → Cd→ Co → Ni → Sn → Pb → H → Sb → Bi → Cu → Hg → Ag → Pd → Pt → Au

Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.

В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство - образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:

Zn + 2 HCl = ZnCl 2 + H 2 + Q

Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.