Сплавы. Практическая химия Сообщение сплавы железа

Железо – это металл сероватого цвета, атомная масса которого равна 55,85, а атомный радиус – 0,127 нм. Температура плавления 1539 0 С. В твердом состоянии железо имеет кристаллическую решетку, для которой характерно два возможных состояния, называемых полиморфной модификацией и обозначаемых как α-Fe и γ-Fe. Существование этих модификаций зависит от температуры нагрева.

Для α-Fe характерна объемноцентрированная кубическая решетка, которая существует при температурах менее T≤910 0 C и в диапазоне T=1392÷1539 0 C. В диапазоне температур T=910÷1392 0 C железо существует в форме γ-Fe.

Углерод является неметаллическим элементом, который растворяется в железе как в жидком, так и твердом состояниях. Чаще всего система Fe-C существует в виде жидкого сплава или твердого раствора. Твердыми растворами называют такие фазы, в которых один из компонентов сохраняет свою кристаллическую структуру, а атомы других компонентов присутствуют в решетке первого, изменяя ее размеры. Различают твердые растворы замещения и внедрения.

Твердый раствор углерода и других примесей в α-Fe называется ферритом . Углерод при этом располагается в центре грани куба, в котором может поместиться сфера радиусом, равным 0,29R , где R – атомный радиус железа.

Раствор углерода и других примесей в γ-Fe называют аустенитом . Атом углерода при этом размещается в центре куба со вписанной сферой радиусом 0,41R . Аустенит характеризуется высокой пластичностью и низкой прочностью.

Наиболее распространенными сплавами на основе железа являются сталь и чугун, которые представляют собой твердые растворы (сплавы) железа Fe с углеродом С. Если содержание углерода в растворе менее 2,14%, то такой сплав называется сталью, а если больше 2,14%, то чугуном. Граница разделения чугуна и стали соответствует предельной растворимости углерода в аустените. Стали после затвердевания не содержат хрупкой структурной составляющей и при высоком нагреве имеют только аустенитную структуру, обладающую высокой пластичностью. По этой причине стали легко деформируются при нормальных и повышенных температурах, т.е. являются ковкими материалами. В отличие от сталей чугуны характеризуются хрупкостью, но обладают хорошими литейными свойствами, в том числе более низкими температурами плавления.

Стали

Стали – это деформируемые сплавы железа с углеродом (до 2,14% углерода) и другими элементами. Конструкционная сталь должна иметь и хорошие технологические свойства: хорошо обрабатываться давлением и резанием, быть не склонной к шлифовочным трещинам, обладать высокой прокаливаемостью и малой склонностью к обезуглероживанию, деформациям и трещинообразованию при закалке.

По химсоставу стали делят на углеродистые и легированные. Углеродистые стали содержат кроме железа и углерода также марганец (до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей: сера увеличивает хрупкость в горячем состоянии (красноломкость), а фосфор – при пониженных температурах (хладноломкость). В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне- (0,25 < С ≤ 0,6%) и высокоуглеродистые (C > 0,6%) стали. С повышением содержания углерода повышается твердость и прочность, но уменьшается пластичность и ухудшается свариваемость стали.

В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром, никель, молибден, вольфрам, ванадий, титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний – более 0,8%.

В общем объеме продукции машиностроения, продукции из стали обыкновенного качества (ГОСТ 380-94) и качественной (ГОСТ 1050-74), а также легированной (ГОСТ 4543-71) составляют почти 80%. Они дешевые и имеют удовлетворительные механические свойства в сочетании с хорошей обрабатываемостью резанием и давлением.

Углеродистые стали являются наиболее распространенными. Их производство доходит до 80% от общего объема производства всех сталей.

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми (С ≤ 0,7%), так и легированными. Инструментальные стали служат для изготовления режущего, ударно-штампового и мерительного инструментов. Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем, кремнием и другими элементами. К сталям с особыми свойствами относят нержавеющие, немагнитные, электротехнические стали, стали постоянных магнитов и др.

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные. Различие между ними заключается в количестве вредных (сера и фосфор) примесей. Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных – каждого элемента не более 0,035%; а в высококачественных – не более 0,025%.

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»). Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки.

Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства. Из углеродистых сталей обыкновенного качества (ГОСТ 380-94) изготавливают неответственные корпусные детали, крепежные детали, фасонный прокат (двутавры, швеллера, уголки) и др.

Степень раскисления обозначается индексами, стоящим справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А, кипящая; БСт3пс – сталь группы Б, полуспокойная; ВСт5сп – сталь группы В, спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70), показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью. Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50 благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием. Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью, износостойкостью и упругостью, используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки.

Легированными называют стали, в состав которых для придания им специальных свойств вводят легирующие элементы. В качестве легирующих элементов, как правило, используются: хром (Cr), кремний (Si), никель (Ni), ванадий (W), алюминий (Al), марганец (Mg) и др. Они по-разному влияют на свойства стали: марганец повышает прочность и износостойкость; кремний увеличивает упругие характеристики стали; хром повышает коррозионную стойкость, твердость, прочность, жаропрочность; никель снижает коэффициент линейного расширения, повышает прочность и износостойкость; вольфрам и молибден повышают прочность и твердость, улучшают режущие свойства при повышенной температуре.

Стали, в которых суммарное содержание легирующих элементов не превышает 2,5%, называются низколегированными ; в том случае, если содержание легирующих элементов составляет 2,5...10% - это легированные стали, а если легирующих добавок больше 10%, то такие стали называют высоколегированными .

Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах. Цифры за буквой не ставятся при содержании легирующего элемента менее 1,5%. Легирующие элементы обозначаются следующими буквами: Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. Например, нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля и до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого. В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%.

Обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали. Например, буква Ш – шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и т.д.

Углеродистые стали обыкновенного качества по ГОСТу 380-94 с обозначением Ст предназначены для изготовления горячекатаного проката: сортового, фасонного, толсто- и тонколистового, широкополосного (холодного тонколистового), а также слитков, блюмсов, слябов, сутунки, катаной и литой заготовок, труб, поковок и штамповок, ленты, проволоки, метизов, малонагруженных деталей, металлоконструкций, всевозможных корпусных деталей и т.п.

Марки зарубежных углеродистых сталей обыкновенного качества и международного стандарта, соответствующих российским сталям марки СТ по механическим свойствам приведены в табл. 2. При этом содержание основных элементов (С, Si, Mn, P, S) лежат в предусмотренных интервалах.

При сопоставлении пределов прочности и текучести разброс составляет в пределах ±50 МПа.

Марки зарубежных аналогов углеродистой и низколегированной качественной конструкционной стали приведены для сравнения результатов исследования ученых различных стран мира (табл. 3 и 4).

Таблица 2

Таблица 3

Таблица 4

Механические свойства сталей можно характеризовать пределом прочности σ в и пределом текучести σ T , значения которых в сильной степени зависят от химического состава сталей и ее термообработки. Кроме того, для сталей характерно постоянные значения модуля упругости Е и коэффициента Пуассона μ, которые независимо от марки можно полагать равными соответственно E=2,1∙10 5 МПа, μ=0,3. С увеличением процентного содержания углерода повышаются характеристики прочности и снижается пластичность.

Коррозийно-стойкие стали обладают стойкостью против коррозии. Это большая группа высоколегированных сталей. В качестве легирующего элемента здесь используется хром (13...25%), иногда никель.

Материалы с высокими упругими свойствами (пружинные стали) – это углеродистые либо легированные стали, с большим содержанием углерода (0,5...1,1%).

Качество стали определяется содержанием вредных примесей, однородностью химического состава и структуры. Вредными примесями являются сера, фосфор, мышьяк, кислород, азот и водород. Неметаллические включения в виде оксидов и сульфидов существенно уменьшают пластичность, способствуют хрупкому разрушению. Крупные их частицы с размерами от 20 мкм и выше снижают прочность, контактную выносливость, являются опасными концентраторами напряжений и при знакопеременных нагрузках уменьшают сопротивление усталости деталей. Здесь вакуумирование стали снижает содержание газов, выравнивает химический состав, а электрошлаковый переплав сталей обеспечивает одинаковые механические характеристики вдоль и поперек направления прокатки.

С увеличением количества углерода возрастает доля цементита в структуре, что затрудняет перемещение дислокации и, соответственно, развитие сдвиговых процессов. В результате повышается прочность, но снижается пластичность.

У низколегированной стали с содержанием углерода до 0,2% после закалки и отпуска происходит упрочнение, а также уменьшается чувствительность к концентраторам напряжений.

Низколегированные стали с карбонитридным упрочнением обладают высокой прочностью, вязкостью и хладостойкостью.

Резервом повышения качества стали является производство их металлизированных окатышей, отличающихся чистотой от вредных примесей. Для улучшения обрабатываемости резанием, в стали дополнительно вводят селен, свинец, кальций и теллур.

Прогрессивными методами винтовой и поперечной, продольно-винтовой, холодной прокатки изготовляются детали в виде тел вращения: роторы компрессоров, шнеки мясорезательных машин, кольца и шарики подшипников, зубчатые колёса с накаткой зубьев, сверла, винты, звездочки цепной передачи, ступенчатые валы, втулки и заготовки других деталей. При этом наружные слои приобретают волокнистую структуру, ориентированную по профилю зуба, твёрдость повышается в 1,4 - 1,5 раза, прочность увеличивается до 25%, а усталостная выносливость повышается до 2,2 раза. Это намного эффективнее, чем точение и фрезерование круглой заготовки.

Разработаны процессы и оборудование для полугорячей и холодной объёмной штамповки, выдавливания, позволяющие получать точную заготовку. При этом направления волокон совпадают с направлениями нормальных напряжений.

Таблица 5. Область применения углеродистых сталей обыкновенного качества

Низкоуглеродистые стали Сталь 05кп, 08кп, 08пс, 08, 10кп, 10пс, 10, 15кп, 15пс, 15, 20кп, 20пс, 20, 25, 15Г, 20Г, 25Г (ГОСТ 1050-74) применяются для изготовления шайб, заклепок, крышек, болтов, фланцев, вилок, муфт, втулок, косынок, штуцера теплообменных аппаратов. После цементации и цианирования применяют для изготовления втулок, осей звеньев цепи, болтов, гаек, винтов, шестерен, червяков, шпинделей, звездочек и других деталей с высокой твердостью и износостойкостью поверхностей.

Износостойкие цементируемые стали 15Х, 15ХА, 20Х, 15ХФ, 18ХГ, 20ХН, 12ХН2, 12ХН3А, 20ХН3А, 12Х2Н4А, 20Х2Н4А, 18Х2Н4МА, 14Х2Н3МА, 20ХН2М, 15Н2М, 20Н2М (ГОСТ 4543-71) применяются для изготовления червячных, шлицевых и распределительных валов, зубчатых колес, втулок, шпилек, осей, вал-шестерен, валов редукторов.

Углеродистые стали 5пс и 5сп (ГОСТ 380-88) применяются для изготовления болтов и гаек.

Стали с добавками титана 18ХГТ, 25ХГМ, 25ХГТ, 30ХГТ, 15ХГН2ТА, 15Х2ГН2ТА, 15Х2ГН2ТРА, 20ХГНТР, 25Х2ГНТА (ГОСТ 4543-71) применяются для изготовления зубчатых колес коробок передач, червячных валов, зубчатых венцов, осей, тяжелонагруженных зубчатых колес, трансмиссий транспортных машин. После азотирования – ходовых валиков и винтов станков и др. деталей, от которых требуется минимальная деформация.

Стали с микродобавками бора 20ХГР, 27ХГР, 20ХНР, 20ХГНР (ГОСТ 4543-71) применяются для изготовления зубчатых колес, кулачковых муфт, вал-шестерен, червяков, пальцев, валиков, втулок.

Углеродистые и легированные стали 30, 35, 30Г, 35Г, 40, 45, 40Г, 45Г, 50Г, 50, 55, 40Г2, 30Х, 35Х, 40Х, 45Х, 50Х, 30ХРА, 33ХС, 38ХС, 40ХС, 20ХГСА, 25ХГСА, 30ХГС, 30ХГСА,35ХГСА (ГОСТ 1050-74) и 30ХН2МА, 38Х2Н2МА (ГОСТ 4543-71) с различной термической и химико-термической обработкой применяются для изготовления осей, валиков, винтов, штифтов, упоров, колец, шайб, втулок, тяг, траверс, шатунов, валов, шпинделей, вилок переключения передач, маховиков, гаек, болтов, зубчатых венцов, зубчатых колес, шпонок, храповиков, фрикционных дисков, плунжеров, муфт, зубчатых реек, шлицевых и шестеренных валов, анкерных болтов, муфт сцепления коробок скоростей, полуосей, деталей сварных соединений, ответственных деталей, подвергающихся вибрационным и динамическим нагрузкам. После закалки с отпуском – тяг, траверс, рычагов, цилиндров прессов, крепежных деталей, валов, шпинделей высокой прочности

Высокопрочные стали 38ХН3МФА, 30ХН2МФА, 38ХН3МА, 34ХН1М, 34ХН1МА, 34ХН3М, 34ХН3МА, 35ХН1М2ФА (ГОСТ 4543-71) применяются для изготовления деталей редукторов, болтов, шпилек, валов, осей, зубчатых колес, муфт, особо ответственных деталей компрессорных машин, роторов, полумуфт и др. особо ответственных тяжелонагруженных деталей.

Конструкционные углеродистые литейные стали 25Л, 30Л, 40Л, 45Л, 50Л, 55Л, 35ГЛ, 30ГСЛ, 40ХЛ, 35ХМЛ, 35ХГСЛ (ГОСТ 977-75) применяются для изготовления станин прокатных станов, шкивов, траверс, корпусов подшипников, зубчатых колес, корпусов редукторов, кронштейнов, балок, маховиков, тормозных дисков, шестерен, кожухов, вилок, звездочек, вилок компрессора, деталей лебедки, стяжных колец плавающих головок подогревателей и теплообменников, муфт подъемно-транспортных машин, ходовых колес, валиков крупно-, средне- и мелкосортных станов для прокатки мягкого металла, дисков, зубчатых венцов, крестовин, ступиц, валов, кулачковых муфт, цапф, щек дробилок, рычагов, ходовых колес, толкателей, осей и др. деталей общего машиностроения.

Высоколегированные коррозионно-стойкие литейные стали 20Х13Л, 15Х13Л, 09Х16Н4БЛ, 09Х17Н3СЛ, 40Х24Н12СЛ, 10Х18Н11БЛ, 12Х18Н12М3ТЛ, 15Х23Н18Л, 35Х18Н24С2Л (ГОСТ2176-77) применяются для изготовления лопаток компрессоров, шнеков, крепежных деталей, деталей, подвергающихся действию слабых агрессивных сред (влажный пар, водные растворы солей органических кислот), деталей повышенной прочности для пищевой промышленности.

Коррозионно-стойкие стали 30Х13, 40Х13, 14Х17Н2, 12Х17, 15Х17АГ14, 10Х14Г14Н4Т, 08Х17Т, 08Х18Т1, 15Х25Т, 15Х28, 08Х22Н6Т, 08Х18Г8Н2Т, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х17Н15М3Т, 03Х17Н14М3, 03Х16Н15М3, 03Х16Н15М3Б, 08Х17Н13М2Т, 11Х11Н2В2МФ, 16Х11Н2В2МФ, 13Х11Н2В2МФ, 31Х9Н9МВБ (ГОСТ 5632-72) применяются для изготовления режущих инструментов, дисков, валов, втулок, оборудования заводов пищевой промышленности, консервных заводов, мясо - молочной промышленности, труб теплообменной аппаратуры, деталей компрессорных машин.

Жаростойкие стали 08Х18Н10, 12Х18Н9, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н9Т, 40Х9С2, 12Х17, 08Х17Т, 08Х18Т1, 15Х18СЮ, 15Х25Т, 15Х28 (ГОСТ 5632-72) применяются для изготовления теплообменников, адсорбционных башен.

Азотируемая сталь 38Х2МЮА (ГОСТ 4543-71) применяется для изготовления втулок, зубчатых колес.

Улучшаемые стали 40, 50 (ГОСТ 8479-70) применяются для изготовления тяг, серьг, крюков, траверс, осей, муфт, звездочек, цилиндров, рычагов.

Низколегированная сталь 14Г2АФ (ГОСТ 19282-73) применяются для изготовления подкрановых ферм для мостовых кранов.

Таблица 6. Физико-механические характеристики

4.1. Компоненты и фазы в системе железо – углерод.

Железо – металл сероватого цвета. Атомный номер 26, атомная масса 55,85, атомный радиус 0, 127 нм. Температура плавления железа 1539˚С. Железо имеет две полиморфные модификации α и γ. Модификация α-железа существует при температурах ниже 910˚С и выше 1392˚С (рис. 17). В интервале температур 1392-1539˚С α-железо нередко обозначают как δ-железо.

Углерод является неметаллическим элементом II периода IV группы периодической системы, атомный номер 6, плотность 2,5 г/см 3 , температура плавления 3500˚С, атомный радиус 0,077нм. Углерод полиморфен. В обычных условиях он находится в виде модификации графита, но может существовать и в виде метастабильной модификации алмаза.

Углерод растворим в железе в жидком и твердом состояниях, а также может быть в виде химического соединения – цементита, а в высокоуглеродистых сплавах и в виде графита.

В системе Fe-C различают следующие фазы: жидкий сплав (Ж), твердые растворы – феррит и аустенит, а также цементит и графит.

Феррит (Ф) – твердый раствор внедрения углерода в α-железе, имеющий объемноцентрированную кубическую решетку (ОЦК). Различают низкотемпературный α-феррит с растворимостью углерода до 0,02% и высокотемпературный δ-феррит с предельной растворимостью углерода 0,1%. Феррит имеет следующие механические свойства: σ в = 250 МПа, σ т = 120 МПа, δ = 50%, ψ = 80%, НВ 800.

Аустенит (А) – твердый раствор внедрения углерода в γ-железе, имеющий гранецентрированную кубическую решетку (ГЦК). Предельная растворимость углерода в γ-железе – 2,14%. Он имеет твердость НВ 1600-2000; δ = 40…50%.

Цементит (Ц) – химическое соединение железа с углеродом (карбид железа Fe 3 C), содержит 6,67% С, имеет сложную ромбическую решетку с плотной упаковкой атомов. Температура плавления цементита точно не определена в связи с возможностью его распада и принимается равной 1550 0 С. Цементит магнитен и характеризуется высокой твердостью НВ 8000.

Графит представляет собой свободный углерод. Кристаллическая решетка графита гексагональная. Он мягок, электропроводен, химически стоек, малопрочен.

4.2. Диаграммы состояния железо-углеродистых сплавов.

Существует две диаграммы железоуглеродистых сплавов: железо-цементит и железо-графит. Эта двойственность обусловлена тем, что в зависимости от внешних условий в равновесии с жидким раствором и твердыми растворами железа могут находиться как цементит (карбид железа Fe 3 C), так и графит.

Цементит является неустойчивым химическим соединением, которое в случае длительного пребывания при достаточно высоких температурах диссоциирует с выделением графита. Неустойчивость цементита возрастает с повышением содержания углерода в сплавах. В сталях цементит отличается высокой устойчивостью; графит в них может появляться лишь в результате длительного пребывания (тысячи часов) при температурах 500 0 -700 0 С. В чугунах графит часто образуется уже при медленном охлаждении или при нагревах и относительно кратковременных выдержках при повышенной температуре.


Рис. 22. Фазовый анализ диаграммы состояния железо-цементит (а); верхний левый угол диаграммы (б)

Однако диаграмму состояний железоуглеродистых сплавов изображают двумя системами линий: сплошными, отражающими состояние равновесия в присутствии в сплавах цементита, и пунктирными – графита.

Наибольшее практическое значение имеет метастабильная диаграмма состояний Fe-Fe 3 C, т. к. появление графита в чугунах объясняется протеканием вторичной реакции графитизации: цементит → железо + графит, а в сталях графит встречается чрезвычайно редко

Диаграмма состояний Fe-Fe 3 C представлена на рис. 22.

На диаграмме Fe-Fe 3 C точка А (1539 0 С) отвечает температуре плавления железа, а точка D (~1550 0 С) – температуре плавления цементита. Точки N (1392 0 С) и G (910 0 С) соответствуют полиморфному превращению α ↔ γ.

Концентрация углерода (по массе) для характерных точек диаграммы состояния Fe-Fe 3 C следующая: В – 0,51% С в жидкой фазе, находящейся в равновесии с δ-ферритом и аустенитом при перитектической температуре 1499 0 С; Н – 0,1% С предельное содержание в δ-феррите при 1499 0 С; J – 0,16% С – в аустените при перитектической температуре 1499 0 С; Е – 2,14% С предельное содержание в аустените при эвтектической температуре 1147 0 С; S – 0,8% С – в аустените при эвтектоидной температуре 727 0 С; Р – 0,02% С – предельное содержание в феррите при эвтектоидной температуре 727 0 С.

Кристаллизация сплавов Fe-Fe 3 C. Линии диаграмм состояния Fe-Fe 3 C, определяющие процесс кристаллизации, имеют следующие обозначения и физический смысл: АВ – линия ликвидус, показывает температуру начала кристаллизации δ-феррита (Ф) из жидкого сплава (Ж); ВС – линия ликвидус, соответствует температуре начала кристаллизации аустенита (А) из жидкого сплава (Ж); CD – линия ликвидус, соответствует температуре начала кристаллизации первичного цементита (Ц I) из жидкого сплава (Ж); АН – линия солидус, является температурной границей области жидкого сплава (Ж) и кристаллов δ-феррита (Ф); ниже этой линии существует только δ-феррит; HJB – линия перитектического превращения (1499 0 С), на ней происходит перитектическая реакция:

(жидкость состава т. В взаимодействует с кристаллами δ-феррита состава т. Н с образованием аустенита состава т. J). Линия ECF – линия солидус, соответствует кристаллизации эвтектики – ледебурита.

Ледебурит – эвтектика, представляющая собой механическую смесь кристаллов аустенита и цементита, полученную в процессе их одновременной кристаллизации из жидкого сплава, состоящая на момент образования из аустенита состава т. Е и цементита:

Рассмотрим кристаллизацию некоторых сплавов, содержащих различное количество углерода. В сплавах, содержащих 0,1-0,16% С, по достижении температур, отвечающих линии АВ из жидкой фазы начинают выделяться кристаллы δ-феррита и сплав становится двухфазным Ж + δФ. Состав δФ при понижении температуры меняется по линии солидус, а состав Ф – по линии ликвидус. При температуре 1499 0 С в равновесии находятся δФ состава точки Н (0,1% С) и Ж состава точки В (0,51% С). При этой температуре протекает перитектическое превращение:

в результате которого образуется двухфазная структура δФ и А состава точки J (0,16% С).

В сплавах, содержащих от 0,16 до 0,51% С, при перитектической температуре в результате взаимодействия между δФ и Ж образуется А, но часть жидкой фазы остается неизрасходованной:

Процесс кристаллизации закончится по достижении температур, соответствующих линии солидус JE. После затвердевания сплавы приобретают однофазную структуру – аустенит.

При температуре 1147 0 С аустенит достигает предельной концентрации, соответствующей т. Е (2,14% С), а оставшаяся жидкость – эвтектического состава т. С (4,3% С).

При температуре эвтектики (линия ECF) существует нонвариантное (С = 0) равновесие аустенита состава т. Е (А Е), цементита (Fe 3 C) и жидкой фазы состава т. С (4,3% С). В результате кристаллизации жидкого сплава состава т. С (4,3% С) образуется эвтектика – ледебурит, состоящая в момент образования из аустенита состава т. Е и цементита:

Доэвтектические сплавы после затвердевания имеют структуру аустенит + ледебурит (А + Fe 3 C). Эвтектический сплав (4,3% С) затвердеет при постоянной температуре с образованием только эвтектики – ледебурита.

Заэвтектические сплавы (4,3-6,67% С) начинают затвердевать с понижением температуры до линии ликвидус CD, когда в жидкой фазе зарождаются и растут кристаллы цементита. Концентрация углерода в жидком сплаве с понижением температуры уменьшается по линии ликвидус. При температуре 1147 0 С жидкость достигает эвтектической концентрации 4,3% С (т. С) и затвердевает с образованием ледебурита. После затвердевания заэвтектические сплавы состоят из первичного цементита и ледебурита.

Сплавы, содержащие до 2,14% С, называют сталью, а более 2,14% С – чугуном. Стали после затвердевания не содержат хрупкой составляющей – ледебурита – и при высоком нагреве имеют только аустеничную структуру, обладающую высокой пластичностью. Поэтому стали легко деформируются при нормальных и повышенных температурах, т. е. являются в отличие от чугуна ковкими сплавами.

По сравнению со сталью чугуны обладают значительно лучшими литейными свойствами, что объясняется присутствием в структуре чугуна легкоплавкой эвтектики.

Фазовые и структурные изменения в сплавах Fe-Fe 3 C после затвердевания связаны с полиморфизмом железа и изменением углерода в аустените и феррите с понижением температуры. Превращения, протекающие в твердом состоянии, описываются следующими линиями: NH – начало полиморфного превращения δ-феррита в аустенит; NJ – окончание полиморфного превращения δ-феррита в аустенит; GS – начало полиморфного превращения аустенита в феррит; GP – при охлаждении соответствует окончанию превращения аустенита в феррит; SE – линия предельной растворимости углерода в аустените, при охлаждении соответствует температурам начала выделения из аустенита вторичного цементита. Линия эвтектоидного превращения PSK при охлаждении соответствует распаду аустенита (0,8% С) с образованием эвтектоида – феррито-цементитной структуры, получившей название перлит

Изменение растворимости углерода в феррите в зависимости от температуры соответствует линии PQ. При охлаждении эта линии соответствует температурам начала выделения третичного цементита, а при нагреве – полному его растворению.

Ниже GP существует только феррит. При дальнейшем медленном охлаждении по достижении температур, соответствующих линии PQ, из феррита выделяется цементит третичный, который резко снижает пластичность феррита.

При понижении температуры состав аустенита меняется по линии GOS, а феррита – по линии GP.

Чем выше концентрация углерода в стали, тем меньше образуется феррита. По достижению температуры 727 0 С (А 1) содержание углерода в аустените достигает 0,8% (т. S). Аустенит, имеющий эвтектоидную концентрацию углерода, распадается с одновременным выделением из него феррита и цементита, образующих перлит.

Эвтектоидное превращение аустенита происходит при постоянной температуре 727 0 С, при наличии трех фаз: феррит (0,02% С), цементит (6,67% С) и аустенит (0,8% С). При этом система нонвариантна: С = К – Ф + 1 = 2 – 3 + + 1 = 0.

Вариантность системы будет рассмотрена ниже.

После окончательного охлаждения доэвтектоидные стали имеют структуру феррит + перлит.

Чем больше в стали углерода, тем меньше в структуре феррита и больше перлита. При содержании в стали 0,6-0,7% С феррит выделяется в виде оторочки вокруг зерен перлита (ферритная сетка).

Стали, содержащие от 0,8% до 2,14% С, называют заэвтектоидными. Выше линии ES в этих сплавах будет только аустенит. При температурах, соответствующих линии ES, аустенит оказывается насыщенным углеродом, и при понижении температуры из него выделяется вторичный цементит, т. е. сплавы становятся двухфазными (А + Ц II). По мере выделения цементита концентрация углерода в аустените уменьшается по линии ES. При снижении температуры до 727 0 С (линия PSK) аустенит, содержащий 0,8% С, превращается в перлит. После охлаждения заэвтектоидные стали состоят из перлита и вторичного цементита, который выделяется в виде сетки по границам бывшего зерна аустенита и делает сталь хрупкой.

В доэвтектических чугунах, содержащих 2,14-4,3% С, при понижении температуры, вследствие уменьшения растворимости углерода в аустените (линия SE), происходит частичный распад аустенита – как первых его кристаллов, выделившихся из жидкости, так и аустенита, входящего в ледебурит. Это приводит к выделению кристаллов вторичного Fe 3 C и уменьшению содержания углерода в аустените. При температуре 727 0 С аустенит, обедненный углеродом до 0,8%, превращается в перлит. Таким образом, доэвтектические чугуны после окончательного охлаждения имеют структуру: перлит, ледебурит (перлит + цементит) и вторичный цементит; чем больше в чугуне углерода, тем меньше перлита и больше ледебурита. Эвтектический чугун содержит 4,3% С, при температурах ниже 727 0 С состоит только из ледебурита (перлит + цементит).

Заэвтектический чугун содержит углерода больше, чем 4,3%, и после затвердевания состоит из цементита и ледебурита (аустенит + Fe 3 C).

При понижении температуры эвтектический аустенит обедняется углеродом вследствие выделения избыточного цементита и при температуре 727 0 С распадается с образованием перлита. После охлаждения заэвтектические чугуны состоят из первичного цементита, имеющего форму пластин, и ледебурита (перлит + цементит). С повышением содержания углерода количество цементита возрастает.

Цементит третичный в сталях и чугунах, а также цементит вторичный в эвтектическом и заэвтектических чугунах как самостоятельные структурные составляющие при микроструктурном анализе обычно не обнаруживаются.

Следует отметить, что все описанные изменения структуры, происходящие при охлаждении сплавов, обратимы, т. е. они совершаются и при нагреве сплавов (в обратном порядке).

О фазовых превращениях, происходящих в сплавах, можно судить по кривым охлаждения или нагревания. К числу фазовых превращений относятся плавление или кристаллизация, перестройка кристаллической решетки, полиморфизм, перитектическое, эвтектическое и эвтектоидное превращение и перекристаллизация.

Система характеризуется параметрами своего фазового состояния: температурой, давлением и объемом. В двух- и многокомпонентных системах вместо объема указывается относительное содержание (массовая доля) компонентов.

Фазовое состояние системы, характеризующееся числом сосуществующих фаз (Ф), зависит от числа компонентов (К) и числа степеней свободы С. Эти три фактора связаны уравнением С = К – Ф + 1, которое называется правилом фаз, где за 1 принят параметр температура.

Правило фаз используется для фазового анализа кривых охлаждения.

Весовое соотношение структурных составляющих (или фаз), присутствующих в сплавах, а также соотношение кристаллических фаз в структурных составляющих – эвтектиках и эвтектоидах, можно определить по правилу отрезков.

Количества твердой и жидкой фаз данного сплава при рассматриваемой температуре обратно пропорциональны отрезкам горизонтали, проведенной через данную точку до пересечения с линией ликвидуса и с линией солидуса (или с линией ликвидуса и осью ординат).

Например, определим количество аустенита и жидкого расплава в сплаве с содержанием углерода 2% при температуре 1300 0 С (рис. 23). Отрезок «ас» характеризует весь сплав, тогда количество аустенита Q A и количество жидкой фазы Q Ж определяются по формулам:

Значит в точке «b» аустенита по отношению ко всему сплаву находится 63,1%, а жидкого сплава 36,9%.

Определим весовое соотношение структурных составляющих в белом доэвтектическом чугуне с 3% С при 900 0 С (рис. 23).

При 900 0 С в белов доэвтектическом чугуне имеются три структурные составляющие: эвтектика, аустенит и вторичный цементит.

Поскольку весовая доля эвтектики не изменяется с температуры ее образования до комнатной (20 0 С) температуры, подсчитаем, сколько в нашем сплаве было эвтектики (т. е. ледебурита) при эвтектической температуре 1147 0 С, т. е. тогда, когда присутствовали только две структурные составляющие: ледебурит и аустенит. Содержание углерода в эвтектике равно 4,3%, содержание углерода в аустените при 1147 0 С равно 2,14%. Таким образом, отношение веса эвтектики к весу всего сплава равно отношению отрезка ЕО к отрезку ЕС:

Остальная доля веса приходится на аустенит, которую при эвтектической температуре будет около 60%.

При охлаждении чугуна от эвтектической температуры до 900 0 С из аустенита выделяются кристаллы вторичного цементита, согласно линии предельной растворимости ES, т. е. содержание углерода в аустените соответствует точке «е», что составляет 1,3%.

Подсчитаем теперь, сколько по весу вторичного цементита должно выделяться из аустенита при охлаждении с 1147 0 С до 900 0 С. Содержание углерода в аустените при 900 0 С равно 1,3%, содержание углерода в цементите 6,67%. Следовательно, отношение веса кристаллов вторичного цементита к весу всего сплава соответствует отношению отрезков «ek» к «el»:

В качестве примера рассмотрим процесс структурообразования в охлажденной стали с 0,4% С (рис. 23). Выше точки t 1 сталь находится в жидком состоянии и охлаждается. В интервале температур t 1 – t 2 из жидкой фазы, концентрация углерода (состав) в которой изменяется по ликвидусу АВ, образуются кристаллы δФ. Их состав определяется по солидусу АН. При кристаллизации выделяется теплота и на участке кривой t 1 – t 2 охлаждение сплава замедляется.

При температуре t 2 (1499 0 С) происходит перитектическое превращение:

Избыточный жидкий расплав кристаллизуется при охлаждении в интервале температур t` 2 – t 3 с образованием аустенита. В интервале температур t 3 – t 4 происходит охлаждение аустенита. При температурах t 4 – t 5 происходит полиморфное превращение, т. е. аустенит, имеющий решетку ГЦК, превращается в феррит, имеющий решетку ОЦК. При этом содержание углерода в аустените изменяется по линии 4S, а массовая доля аустенита уменьшается. Содержание же углерода в феррите изменяется по линии 4 / P, а массовая доля феррита увеличивается.

При температуре t 5 (727 0 С) концентрация углерода в аустените будет соответствовать точке S (0,8% С), а в феррите – точке Р (0,02% С), т. е. происходит эвтектоидное превращение:

когда из аустенита, не превратившегося в феррит, образуется перлит.

В процессе последующего охлаждения сплава из феррита, согласно линии предельной растворимости PQ, выделяется Ц III , который наслаивается на цементит входящий в состав перлита и структурно не обнаруживается.

Массовые доли феррита и перлита, как структурных составляющих стали определим для температуры 700 0 С по правилу отрезков:

Массовая доля феррита как фазы, существующей вместе с цементитом, определяется как:

Остальные 4,3% приходятся на долю цементита.

Итак, структурный состав медленно охлажденной стали, содержащей 0,4% С, состоит из 51,3% феррита и 48,7% перлита, а фазовый состав будет соответствовать 95,7% феррита и 4,3% цементита.

Типовые примеры кривых охлаждения с указанными структурами представлены на рис. 24.

Вопросы для повторения раздела.

1. Какие фазы образуются в системе Fe – Fe 3 C?

2. Укажите изотермические реакции, происходящие при охлаждении на линиях HIB, ECF, PSK.

3. Постройте кривую охлаждения и опишите превращения, происходящие в доэвтектоидной стали и заэвтектическом чугуне.

4. Как структурный и фазовый состав стали у чугуна зависят от содержания углерода и температуры?

5. Определите содержание углерода в структурных составляющих сплава, содержащего 1,3% С, при температуре 800ºС.

Сплавы железа с углеродом (стали, чугуны) являются наиболее распространенными материалами в машино- и приборостроении.

Железо (Fe) - блестящий светло-серый металл. Атомный номер 26, плотность 7,87 Мг/м 3 , температура плавления 1539 °С, температура кипения 2880 °С, модуль нормальной упругости 210 ГПа. Механические свойства железа зависят от его чистоты. Временное сопротивление при растяжении технически чистого железа составляет 300-400 МПа, предел текучести - 100-250 МПа, относительное удлинение - 30-50%, относительное сужение - 70-80%, Н В 60-90.

Углерод (С) в железоуглеродистых сплавах находится в химически связанном или свободном состоянии. Атомный номер 6, плотность 2,6 Мг/м 3 , температура плавления 4000 °С, температура кипения 4200 °С. Он имеет две кристаллические модификации - графит и алмаз. При нормальных условиях стабилен графит, имеющий гексагональную решетку; алмаз получается при высоких давлениях и температурах, имеет кубическую (метастабильную) решетку.

В зависимости от температуры и содержания углерода железоуглеродистые сплавы образуют ряд структурных составляющих (фаз).

Феррит (Ф) - твердый раствор внедрения углерода в а-железе, имеет кубическую объемно-центрированную решетку, максимальная растворимость при 727°С составляет 0,02%. Феррит магнитен, на диаграмме состояния Fe-С занимает область GPQ (рис. 1.7). Феррит характеризуется низкой прочностью (о в = 250 МПа, о 0 2 = = 120 МПа) и твердостью (НВ 80-100) и высокой пластичностью (5 = 50%; |/ = 80%).

Рис. 1.7. Диаграмма состояния железо-углерод (цементит) Аустенит (А) - твердый раствор внедрения углерода в у-желе- зе, имеет кубическую гранецентрированную решетку. Предельная растворимость углерода в у-железе при температуре 1147 °С - 2,14%. Аустенит немагнитен, на диаграмме состояния занимает область AESG. Он имеет твердость НВ 160 при 5 = 40-50%.

Цементит (Ц) - химическое соединение железа с углеродом (карбид железа Fe 2 С), содержит 6,67% С, температура плавления точно не установлена, принимается примерно равной 1260 °С. Цементит магнитен, характеризуется высокой твердостью (> Н В 800) и низкой пластичностью. Цементит является метастабильной фазой и при определенных условиях распадается с выделением свободного графита. В зависимости от условий образования различают цементит первичный, который образуется из жидкости при затвердевании расплава, вторичный - при распаде аустенита и третичный - при выделении углерода из феррита.

Графит представляет собой свободный углерод, он мягок, обладает низкой прочностью и электропроводностью. В чугунах и гра- фитизированной стали он содержится в виде включений. Форма графитовых включений оказывает влияние на механические и технологические свойства сплавов.

Перлит (77) - эвтектоидная механическая смесь феррита и цементита, содержащая 0,83% С; образуется при 727 °С в результате распада аустенита в процессе его охлаждения: Fe y -> Fe a (С) + Fe 3 C. Перлит может быть пластинчатым или зернистым. Это определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет прочность о в = 800 МПа, пластичность 5= 15%, НВ 160-200.

Ледебурит (Л) - механическая смесь (эвтектика) аустенита и цементита, образующаяся из жидкого расплава при 1147 °С и содержании 4,3% С. Твердость НВ 600-700, хрупок. Так как при температуре ниже эвтектоидной (ниже 727 °С) аустенит превращается в перлит, то ледебурит ниже эвтектоидной прямой /Г"А"состоит из цементита и перлита.

Помимо упомянутых составляющих в железоуглеродистых сплавах могут быть неметаллические включения (соединения с кислородом, азотом, серой, фосфором и др.), которые с железом образуют различные фазы.

Критические точки на линиях диаграммы Fe - С принято обозначать буквой А с индексом г, если точка находится на кривой охлаждения, и с - на кривой нагрева. При индексах ги с ставится цифра, указывающая положение рассматриваемой точки на линиях. Так, критическую точку перехода ос- в у-железо при 911 °С обозначают^ - при нагреве и А г - при охлаждении.

Сплавами называют материалы, состоящие из нескольких химических элементов, из которых хотя бы один является металлом.

В металлургии железо и все его сплавы называют чёрными металлами.

Все сплавы железа разделяют на стали и чугуны.

В чистом виде железо слишком мягкое, поэтому для повышения прочности в него вводят углерод. И в зависимости от его содержания сплавы железа делятся на стали и чугуны. Если углерода в сплаве содержится более 2,14%, то такой сплав называется чугуном. А если менее 2,14%, то это сталь.

Чугун

Обычно чугун содержит 2,5-4% углерода, 0,2-1,5% марганца, 1-4,5% кремния, примеси фосфора и серы.

По своей структуре чугуны делятся на белые и серые.

В белых чугунах большая часть углерода находится в виде цементита (карбида железа Fe 3 C). Такие чугуны очень твёрдые и хрупкие. Применяют их для изготовления деталей и конструкций, не требующих дальнейшей обработки.

В серых чугунах углерод содержится в виде структурного свободного графита. В изломе такой чугун имеет серый цвет. Он хорошо сваривается и обрабатывается режущими инструментами.

Очень давно, когда чугун только научились получать, его считали отходом производства, так как из-за его хрупкости из него нельзя было ковать изделия. Но позже расплавленный чугун научились заливать в формы и стали получать готовые чугунные изделия: пушечные ядра, посуду, решётки и др.

Получают чугун в доменных печах из железной руды. В состав железной руды входят оксиды железа. При плавке происходит их восстановление углеродом. В результате получается расплавленный металл с высоким содержанием углерода (чугун) и шлаки. Так как плотность чугуна в 2,5 раза выше плотности шлака, то он легко отделяется от шлаков.

Чугун выпускают для дальнейшей переделки в сталь и для литейного производства в чугунолитейных цехах.

Из чугуна изготавливают детали двигателей, цилиндры, втулки, станины, решётки, люки, тормозные колодки и др.

Сталь

Сплав железа с углеродом, в котором углерода содержится не более 2,14%, называют сталью.

По своему химическому составу различают сталь углеродистую и сталь легированную.

Углеродистая сталь, кроме углерода, содержит примеси кремния, серы и фосфора. Эта сталь имеет низкие электротехнические свойства, невысокую прочность. Она теряет твёрдость и режущую способность уже при 200 о С. Кроме того, она подвергается коррозии в агрессивных средах.

Для улучшения физических и химических свойств стали в неё добавляют элементы, которые называют легирующими. А сама сталь называется легированной. В процессе легирования в сталь добавляют вольфрам, хром, никель, молибден, ванадий, а также большое количество марганца и кремния. Так, марганец увеличивает твёрдость и прочность стали. Медь делает сталь устойчивой к коррозии. А никель и хром увеличивает вязкость. Легированная сталь не имеет недостатков, присущих углеродистой стали.

По количественному содержанию добавок легированную сталь делят на три группы: низколегированную, среднелегированную и высоколегированную. Низколегированная сталь содержит не более 2,5% добавок. Среднелегированная – от 2,5 до 10%. А в состав высоколегированной стали входит более 10% добавок. Высоколегированные стали различаются на нержавеющие, жаростойкие и жаропрочные стали.

На заре металлургии сталь получали из железной руды в плавильных горнах. Но оказалось, что гораздо проще и дешевле получать сталь из чугуна. Поэтому в современной металлургии чугун переплавляют в сталеплавильных печах, чтобы выжечь из него излишки водорода. И получают высококачественную сталь.

Сталь – прочный и пластичный материал. Её используют в металлических конструкциях зданий, мостов, в опорах линий электропередач, трубопроводах, резервуарах, в производстве арматуры, посуды, различного электрооборудования. Без стали невозможно представить кораблестроение, автомобилестроение, авиастроение и многие другие отрасли современной промышленности.

10.1. компоненты в системе железо–углерод (цементит)

сплавы железа распространены в промышленности наиболее широко. Сталь и чугун – представляют собой сплавы железа с углеродом. Сплавы, содержащие до 2%С называют сталями, а свыше 2%С – чугунами.

основой для анализа формирования структуры сталей и чугунов является диаграмма состояния Fe–C (Fe– Fe 3 C) (рис.10.2). Fe – C - диаграмма стабильного равновесия (пунктирные линии);. Fe – Fe 3 C - диаграмма метастабильного равновесия (сплошные линии).

Диаграмма состояния Fe – Fe 3 C является основной, т. к. в соответствии с ней происходят фазовые превращения при охлаждении в углеродистых сталях и белых чугунах.

Железо – полиморфный металл серебристого цвета с Т пл =1539°С, который имеет 2 аллотропические модификации:

Fe a (ОЦК) D Fe g (ГЦК) D Fe d (ОЦК)

феррит аустенит феррит

Рис. 10.1. Зависимость энергии Гиббса G ОЦК и ГЦК модификаций железа от температуры t

Углерод является неметаллическим элементом. Тпл=3500°С. углерод имеет слоистую гексагональную решётку, менее плотную, чем железо. Углерод растворим в железе в жидком и твердом состояниях (образует растворы внедрения), а также может находиться в виде химического соединения Fe 3 C – цементита, а в высокоуглеродистых сплавах и в виде графита.

10.2. Характеристика фаз в системе железо–углерод (цементит)

Рис. 10.2. Диаграмма состояния железо – углерод

В системе Fe–C различают следующие фазы :

1. L – жидкий раствор неограниченной растворимости углерода в железе;

2. Феррит (Ф) – твердый раствор внедрения углерода в ОЦК-Fe. Различают низкотемпературный a-феррит (Fe a ) с растворимостью до 0,02% С (точка Р) и высокотемпературный d-феррит (Fe d ) с предельной растворимостью до 0,1% С (точка Н). Феррит существует при температурах:

3. Аустенит (g, А) – твердый раствор внедрения углерода в ГЦК-Fe (Fe g ). Предельная растворимость углерода в Fe g , достигаемая при 1147°С равна 2,14% С и характеризуется точкой Е.

Аустенит существует в интервале температур 911–1392°С. фазовое превращение
Fe a « Fe g протекает при температуре 911°С (точка G). Превращение Fe g « Fe d протекает при 1392°С (точка N).

Аустенит Fe g (ГЦК) 911°C £ t £ 1392°С

Fe a « Fe g t =911°С (точка G)

Fe g « Fe d t =1392°С (точка N)

4 . Цементит (Ц) – химическое соединение железа с углеродом – карбид железа Fe 3 C. В цементите содержится 6,67% С. цементит имеет сложную ромбическую решетку с плотной упаковкой атомов. Температура плавления варьируется по разным данным в интервале 1250°С (точка D). Цементит обладает высокой твёрдостью и хрупкостью (НВ Fe 3 C >800, в то время как, НВ a ~ 80 и НВ g ~200 ), т.е. феррит и аустенит – пластичные фазы.

5. Графит (Г) – имеет гексагональную слоистую решетку. Графит мягкий и имеет низкую прочность.

10.3. Характеристика фазовых превращений

ABCD – линия ликвидус , при достижении температур, соответствующих при охлаждении сплава этой линии, в сплавах начинают появляться первые кристаллы твёрдой фазы.

AHJЕCF – линия солидус , при достижении температур, соответствующих при охлаждении сплава этой линии, в сплавах исчезают последние капли расплава.

Линии полиморфных превращений : линииHN и NJ превращениеd žg ; линииGS и PG превращениеg ža .

Образование цементита в сплавах при охлаждении:

линияDC : L ž Fe 3 C I

линияES :g ž Fe 3 C II

линияPQ :a ž Fe 3 C III

HJB – линия перитектического превращения , протекающего при постоянной температуре, равной 1499°C, с постоянными концентрациями участвующих компонентов:

t = 1499°C: L 0,5 +d 0,1 ®g 0,16 линия HJB

В точке перитектики J, то есть в сплаве содержащем 0,16% С, в результате перитектического превращения из жидкого расплава (с концентрацией 0,5% С) и кристаллов d-феррита (Fe d) (с концентрацией 0,1% С) образуется аустенит Fe g (с концентрацией 0,16% С). То есть все исходные кристаллы d и вся жидкая фаза полностью расходуются на образование аустенита.

С = 0,16% L 0,5 +d 0,1 ®g 0,16 HJB (1499°C)

0,1% £ С £ 0,16% L 0,5 +d 0,1 ®d 0,1 +g 0,16 . HJB (1499°C)

Fe d ® Fe g HJ¸ NJ

В сплавах, содержащих от 0,16 до 0,5% С при перитектическом превращении d -фаза расходуется полностью, а жидкая фаза остается в избытке, поэтому при температурах ниже линии JB сплав будет двухфазным (L+g ), и процесс кристаллизации закончится по достижении температур, соответствующих линии солидусJE , после чего сплавы приобретут однофазную структуру – аустенит(g ).

0,16% £ С £ 0,5% L 0,5 +d 0,1 ® L 0,5 +g 0,16 HJB (1499°C)

L ® Fe g JВ¸ JЕ

При температурах, соответствующих линии ВС , из жидкого расплава кристаллизуется аустенит (g ), а по линии CD – цементит первичный (Fe 3 C I) .

Горизонталь ЕCF – линия эвтектического превращения , протекающего при постоянной температуре 1147°С. В точке эвтектикиС (при концентрации углерода 4,3%) из жидкого сплава одновременно кристаллизуются аустенит и цементит, образуя эвтектику , которая называется ледебуритом :

t = 1147°С: L 4,3 ® g 2,14 +Fe 3 C 6,67 линия ЕCF

(g+Fe 3 C) - ледебурит (смесь аустенита и цементита)

При кристаллизации доэвтектических сплавов (чугунов), содержащих от 2,14 до 4,3%С , из жидкой фазы по достижении температур, соответствующих линии ликвидус ВС , сначала выделяются кристаллы аустенита, а при 1147°С (линия ECF ) в них происходит эвтектическая реакция с образованием ледебурита (g+Fe 3 C) .

Заэвтектические сплавы (чугуны), содержащие от 4,3 до 6,67% С , начинают затвердевать по достижении температур, соответствующих линии CD . Из жидкости выделяются кристаллы цементита первичного (Fe 3 C I) , а по достижении 1147°С в этих сплавах происходит эвтектическое превращение с образованием ледебурита (g+Fe 3 C) .

Критические точки, образующие линию GS , соответствует температурам начала распада аустенита с выделением из него феррита (a ), а линия ES соответствует температурам начала распада аустенита с выделением из него цементита вторичного (Fe 3 C II ).

Горизонталь PSK – линия эвтектоидного превращения , протекающего при постоянной температуре 727°С. В результате эвтектоидного превращения образуется перлит (П ):

t = 727°С: g 0,8 ®a 0,02 +Fe 3 C 6,67 PSK

(a+Fe 3 C) -перлит (смесь феррита и цементита)

Сплавы, имеющие концентрацию углерода от 0,02 до 0,8% С, называют доэвтектоидными сталями . Сталь с 0,8% С называют эвтектоидной . Сплавы, содержащие от 0,8 до 2,14% С , называют заэвтектоидными сталями .

Линия PQ при охлаждении соответствует началу выделения из феррита (a ) цементита третичного (Fe 3 C III ).

10.3. кривые ОХЛАЖДЕНИЯ сплавов

сплав Fe + 0,3% C

Рис. 10.3. Кривая охлаждения сплава, содержащего 0,3% С

10.4. классификация углеродистых сталей

по составу и структуре

Таблица 1. Структура различных сталей при комнатной температуре

Доэвтектоидные Эвтектоидные Заэвтектоидные
Ф + П + Ц III П П + Ц II

Сплавы железа с углеродом после окончания кристаллизации имеют различную структуру (см. табл.1). Однако фазовый состав всех сплавов одинаков; при температурах ниже 727°С они состоят из феррита и цементита.

Структурные составляющие обладают разными свойствами:

– феррит – мягкий, пластичный, НВ=800 МПа;

– цементит – твердый, хрупкий, НВ>8000 МПа;

– перлит – достаточно пластичен, НВ=1800–2500 МПа.

10.5. зависимость свойств углеродистых сталей

Рис 10.4. Зависимость механических свойств углеродистых сталей от содержания углерода

Fe : Т пл = 1539°С, g = 7,8 г/см 3 , до t = 768°C железо ферромагнитно; s В = 250 МПа;
s 0,2 = 120 МПа; d = 50%; y = 85%; KCU = 3МДж/м 2 ; НВ = 80.

Fe 3 C (Ц) : до t = 210°C цементит ферромагнитен.

Влияние углерода . Твёрдость стали повышается из-за увеличения количества цементита. Прочность стали возрастает до концентрации углерода в ней 0,8% С, т.к. в доэвтектоидных сталях увеличивается количество перлита. В заэвтектоидных сталях происходит хрупкое разрушение, и прочность снижается вследствие присутствия в структуре цементита вторичного (Ц II). Пластичность и ударная вязкость снижаются с увеличением содержания углерода.

Стали используют как литейный и деформируемый материал. В качестве литейных применяются только малоуглеродистые стали (литейные свойства лучше до 0,25 – 0,3% С). С увеличением содержания углерода увеличивается интервал кристаллизации и ухудшаются литейные свойства.

Стали широко применяют в качестве деформируемых сплавов. Стали сильно нагартовываются в процессе холодной пластической деформации. Чем выше содержание углерода в стали, тем выше степень упрочнения.

Влияние серы. Сера является вредной примесью в стали. Она образует соединение FeS, которое в свою очередь образует с железом легкоплавкую эвтектику. При деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название красноломкости.

Кроме того сера снижает предел выносливости, ухудшает свариваемость и коррозионную стойкость. Поэтому содержание серы в стали строго ограничивается до 0,035–0,06%.

Влияние кремния и марганца. Содержание кремния в углеродистой стали в качестве примеси обычно не превышает 0,35–0,4%, а марганца 0,5–0,8%.

Кремний сильно повышает предел текучести, а марганец заметно повышает прочность, практически не снижая пластичности, но резко уменьшает красноломкость стали, т.е. хрупкость при высоких температурах, вызванную влиянием серы.

Влияние фосфора. Растворяясь в феррите, фосфор сильно искажает кристаллическую решетку и увеличивает временное сопротивление разрыву и предел текучести, но сильно уменьшает пластичность и вязкость. Фосфор повышает порог хладноломкости и уменьшает работу развития трещины.

В большинстве сталей фосфор является вредной примесью. В зависимости от качества стали допускается £0,025–0,08%Р.

Влияние азота, кислорода и водорода. Примеси внедрения (азот, кислород), концентрируясь по границам зерен в виде нитридов и оксидов, повышают порог хладноломкости, понижают сопротивление хрупкому разрушению и предел выносливости стали.

Очень вреден растворенный в стали водород, который охрупчивает сталь и приводит к образованию очень мелких трещин (флокенов).

10.6. чугуны

Доэвтектические (2,14–4,3%С) чугуны после окончательного охлаждения имеют структуру П + Л + Ц III (таблица 2). Эвтектический чугун (4,3%С) при температурах ниже 727°С состоит только из ледебурита, а заэвтектические чугуны – из первичного цементита и ледебурита.

Таблица 2. Структура различных чугунов при комнатной температуре

Доэвтектические (2,14 – 4,3% С) Эвтектические (4,3% С) Заэвтектические (>4,3 – 6% С)
П + Л пр (П + Ц) + Ц II Л пр (П + Ц) Ц I + Л пр (П + Ц)

углерод в чугуне может находиться в виде цементита (белый чугун) или графита (серый чугун) или одновременно в виде цементита и графита.

рис.10.3. влияние углерода и кремния на структуру чугуна (заштрихованная область – наиболее распространенные чугуны)

В зависимости от содержания углерода, связанного в цементит, различают:

  1. белый чугун , в котором весь углерод находится в виде цементита Fe 3 C. Структура такого чугуна – перлит и ледебурит (область I на рис.10.3).
  2. половинчатый чугун , большая часть углерода (>0,8%) находится в Fe 3 C. Структура такого чугуна – перлит, ледебурит и пластинчатый графит (область II).
  3. перлитный серый чугун, структура его – перлит и пластинчатый графит (область III).
  4. феррито-перлитный серый чугун, структура его – перлит, феррит и пластинчатый графит (область IV).
  5. ферритный серый чугун, структура:феррит и пластинчатый графит (область V). Весь углерод находится в виде графита.

В зависимости от формы графита и условий его образования различают следующие группы чугунов: серый, высокопрочный с шаровидным графитом и ковкий.

Серый чугун - это сплав Fe–Si–C, содержащий в качестве примесей Mn, P и S. В структуре серого чугуна весь углерод находится в виде графита. Наиболее широкое применение получили доэвтектические чугуны, содержащие 2,4–3,8%С.

Белые чугуны, как самостоятельный конструкционный материал, не применяются из-за высокой хрупкости вследствие присутствия в них большого количества цементита. Белые чугуны используют как передельные чугуны при выплавке стали, а также для ковкого чугуна путём длительного отжига белого доэвтектического чугуна.

сплав Fe + 2,5% C (белый чугун)

Рис. 10.4. Кривая охлаждения сплава, содержащего 2,5% С (белый чугун)