Формирование первичных теоретических моделей и законов и становление развитой теории. Формирование первичных теоретических моделей и законов Формирование первичных теоретических моделей и законов

Обратимся теперь к анализу второй ситуации развития теоретических знаний, которая связана с формированием первичных теоретических моделей и частных теоретических законов. На этом этапе объяснение и предсказание эмпирических фактов осуществляется уже не непосредственно на основе картины мира, а через применение создаваемых теоретических моделей и связанных с ними выражений теоретических законов, которые служат опосредующим звеном между картиной мира и опытом.

В развитой науке теоретические схемы создаются вначале как гипотетические модели, а затем обосновываются опытом. Их построение осуществляется за счет использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели.

Только на ранних стадиях научного исследования, когда осуществляется переход от преимущественно эмпирического изучения объектов к их теоретическому освоению, конструкты теоретических моделей создаются путем непосредственной схематизации опыта. Но затем они используются в функции средства для построения новых теоретических моделей, и этот способ начинает доминировать в науке. Прежний же метод сохраняется только в рудиментарной форме, а его сфера действия оказывается резко суженной. Он используется главным образом в тех ситуациях, когда наука сталкивается с объектами, для теоретического освоения которых еще не выработано достаточных средств. Тогда объекты начинают изучаться экспериментальным путем и на этой основе постепенно формируются необходимые идеализации как средства для построения первых теоретических моделей в новой области исследования. Примерами таких ситуаций могут служить ранние стадии становления теории электричества, когда физика формировала исходные понятия - "проводник", "изолятор", "электрический заряд" и т.д. и тем самым создавала условия для построения первых теоретических схем, объясняющих электрические явления.

Большинство теоретических схем науки конструируются не за счет схематизации опыта, а методом трансляции абстрактных объектов, которые заимствуются из ранее сложившихся областей знания и соединяются с новой "сеткой связей". Следы та кого рода операций легко обнаружить, анализируя теоретические модели классической физики. Например, объекты фарадеевской модели электромагнитной индукции "силовые линии" и "проводящее вещество" были абстрагированы не прямо из опытов по обнаружению явления электромагнитной индукции, а заимствовались из области знаний магнитостатики ("силовая линия") и знаний о токе проводимости ("проводящее вещество"). Аналогичным образом при создании планетарной модели атома представления о центре потенциальных отталкивающих сил внутри атома (ядро) и электронах были почерпнуты из теоретических знаний механики и электродинамики.

В этой связи возникает вопрос об исходных предпосылках, которые ориентируют исследователя в выборе и синтезе основных компонентов создаваемой гипотезы. Хотя такой выбор и представляет собой творческий акт, он имеет определенные основания. Такие основания создает принятая исследователем картина мира. Вводимые в ней представления о структуре при родных взаимодействий позволяют обнаружить общие черты у различных предметных областей, изучаемых наукой.

Тем самым картина мира "подсказывает", откуда можно заимствовать абстрактные объекты и структуру, соединение которых приводит к построению гипотетической модели новой области взаимодействий.

Когда японский ученый Нагаока предложил свою модель строения атома, то он исходил из того, что аналогом строения атома может служить вращение спутников и колец вокруг Сатурна: электроны должны вращаться вокруг положительно заряженного ядра, наподобие того как в небесной механике спутники вращаются вокруг центрального тела.

Использование аналоговой модели было способом переноса из небесной механики структуры, которая была соединена с новыми элементами (зарядами). Подстановка зарядов на место тяготеющих масс в аналоговую модель привела к построению планетарной модели атома.

Таким образом, в процессе выдвижения гипотетических моделей картина мира играет роль исследовательской программы, обеспечивающей постановку теоретических задач и выбор средств их решения.

После того как сформирована гипотетическая модель исследуемых взаимодействий, начинается стадия ее обоснования. Она не сводится только к проверке тех эмпирических следствий, которые можно получить из закона, сформулированного относительно гипотетической модели. Сама модель должна получить обоснование.

Комплекс операций обеспечивает обоснование признаков абстрактных объектов гипотетической модели и превращение ее в теоретическую схему новой области взаимодействий. Будем называть эти операции конструктивным введением объектов в теорию.

Конструктивное обоснование обеспечивает привязку теоретических схем к опыту, а значит, и связь с опытом физических величин математического аппарата теории. Именно благодаря процедурам конструктивного обоснования в теории появляются правила соответствия.

В классической физике процедуры конструктивного обоснования осуществлялись интуитивно. Их не эксплицировали в качестве методологического требования. Лишь переход к современной физике сопровождался выявлением в рамках методологической рефлексии ряда их существенных аспектов. Последнее нашло свое выражение (хотя и не полностью адекватное) в рациональных моментах принципа наблюдаемости, который был важным методологическим регулятивом при построении теории относительности и квантовой механики.

Конструктивное обоснование гипотезы приводит к постепенной перестройке первоначальных вариантов теоретической схемы до тех пор, пока она не будет адаптирована к соответствующему эмпирическому материалу.

Таким образом, генерация нового теоретического знания осуществляется в результате познавательного цикла, который заключается в движении исследовательской мысли от оснований науки, и в первую очередь от обоснованных опытом представлений картины мира, к гипотетическим вариантам теоретических схем. Эти схемы затем адаптируются к тому эмпирическому материалу, на объяснение которого они претендуют. Теоретические схемы в процессе такой адаптации перестраиваются, насыщаются новым содержанием и затем вновь сопоставляются с картиной мира, оказывая на нее активное обратное воздействие. Развитие научных понятий и представлений осуществляется благодаря многократному повторению описанного цикла. В этом процессе происходит взаимодействие "логики открытия" и "логики обоснования гипотезы", которые выступают как взаимосвязанные аспекты развития теории.

В стандартной модели развития теории, которая разрабатывалась в рамках позитивистской традиции, логика открытия и логика обоснования резко разделялись и противопоставлялись друг другу. Отголоски этого противопоставления можно найти и в современных постпозитивистских концепциях философии науки. Так, в концепции, развиваемой П. Фейерабендом, подчеркивается, что генерация новых идей не подчиняется никаким методологическим нормам и в этом смысле не подлежит рациональной реконструкции.

В процессе творчества, как подчеркивает П. Фейерабенд, действует принцип "все дозволено", а поэтому необходимо идеал методологического рационализма заменить идеалом методологического анархизма.

В концепции Фейерабенда справедливо отмечается, что самые различные социокультурные факторы активно влияют на процесс генерации научных гипотез. Но отсюда не вытекает, что нельзя выявить никаких внутренних для науки закономерностей формирования новых идей.

Описанный познавательный цикл, связывающий два этапа формирования теории, не обязательно осуществляется одним исследователем. Более того, как свидетельствует история науки, эта деятельность, как правило, осуществляется многими исследователями, образующими научные сообщества.

В принципе, развитие эксперимента и конструктивное обоснование создаваемых теоретических схем уже на этапе построения частных теорий способно неявно втянуть в орбиту исследования новый тип взаимодействий, структура которых не представлена в картине исследуемой реальности. В этом случае возникает рассогласование между ней и некоторыми теоретическими схемами, а также некоторыми экспериментами. Такое рассогласование может потребовать изменения прежней картины исследуемой реальности. Необходимость такого рода изменений осознается исследователем в форме проблемных ситуаций. Однако разрешение последних и перестройка сложившейся картины мира представляется отнюдь не простым процессом. Этот процесс предполагает экспликацию и критический анализ философских оснований прежней картины исследуемой реальности, а также анализ идеалов познания с учетом накопленного наукой эмпирического и теоретического материала. В результате такого анализа может быть создана новая, на первых порах гипотетическая картина исследуемой реальности, которая затем адаптируется к опыту и теоретическим знаниям. Ее обоснование предполагает ассимиляцию накопленного эмпирического и теоретического материала и, кроме того, предсказание новых фактов и генерацию новых теоретических схем. Плюс ко всему, новая картина реальности должна быть вписана в культуру соответствующей исторической эпохи, адаптирована к существующим ценностям и нормативам познавательной деятельности. Учитывая, что процесс такого обоснования может занять довольно длительный период, новая система представлений о реальности не сразу выходит из гипотетической стадии и не сразу принимается большинством исследователей.

Так возникает конкурентная борьба между различными кар тинами исследуемой реальности, каждая из которых вводит раз личное видение изучаемых наукой объектов и взаимодействий. Типичным примером такой борьбы может служить тот период развития классической электродинамики, когда в ней соперничали исследовательская программа Ампера-Вебера и исследовательская программа Фарадея.

Развитие теоретического знания на уровне частных теоретических схем и законов подготавливает переход к построению развитой теории. Становление этой формы теоретического знания можно выделить как третью ситуацию, характеризующую динамику научного познания.

В науке классического периода развитые теории создавались путем последовательного обобщения и синтеза частных теоретических схем и законов.

Таким путем были построены фундаментальные теории классической физики - ньютоновская механика, термодинамика, электродинамика. Основные особенности этого процесса можно проследить на примере истории максвелловской электродинамики.

Создавая теорию электромагнитного поля, Максвелл опирался на предшествующие знания об электричестве и магнетизме, которые были представлены теоретическими моделями и закона ми, выражавшими существенные характеристики отдельных аспектов электромагнитных взаимодействий (теоретические модели и законы Кулона, Ампера, Фарадея, Био и Савара и т.д.). По отношению к основаниям будущей теории электромагнитного поля это были частные теоретические схемы и частные теоретические законы.

Движение от картины мира к аналоговой модели и от нее к гипотетической схеме исследуемой области взаимодействий составляет своеобразную рациональную канву процесса выдвижения гипотезы. Часто этот процесс описывается в терминах психологии открытия и творческой интуиции. Однако такое описание, если оно претендует на содержательность, непременно должно быть сопряжено с выяснением "механизмов" интуиции. Показательно, что на этих путях исследователи сразу же столкнулись с так называемым процессом гештальтпереключения, составляющим основу интеллектуальной интуиции.

Детальный анализ этого процесса показывает, что интеллектуальную интуицию существенно характеризует использование некоторых модельных представлений, сквозь призму которых рассматриваются новые ситуации. Модельные представления задают образ структуры (гештальт), который переносится на новую предметную область и по-новому организует ранее накопленные элементы знаний об этой области (понятия, идеализации и т.п.).

Такое описание процедур генерации гипотезы соответствует исследованиям по психологии открытия. Но процесс выдвижения научных гипотез можно описывать и в терминах логико-методологического анализа. Тогда выявляются его новые важные аспекты.

Во-первых, сам поиск гипотезы не может быть сведен только к методу проб и ошибок; в формировании гипотезы существенную роль играют принятые исследователем основания (идеалы познания и картина мира), которые целенаправляют творческий поиск, генерируя исследовательские задачи и очерчивая область средств их решения.

Во-вторых, операции формирования гипотезы не могут быть перемещены целиком в сферу индивидуального творчества ученого. Эти операции становятся достоянием индивида постольку, поскольку его мышление и воображение формируется в контексте культуры, в которой транслируются образцы научных знаний и образцы деятельности по их производству. Поиск гипотезы, включающий выбор аналогий и подстановку в аналоговую модель новых абстрактных объектов, де терминирован не только исторически сложившимися средствами теоретического исследования. Он детерминирован также трансляцией в культуре некоторых образцов исследовательской деятельности (операций, процедур), обеспечивающих решение новых задач. Такие образцы включаются в состав научных знаний и усваиваются в процессе обучения. Т. Кун справедливо отметил, что применение уже выработанных в науке теорий к описанию конкретных эмпирических ситуаций основано на использовании некоторых образцов мысленного экспериментирования с теоретическими моделями, образцов, которые составляют важнейшую часть парадигм науки.

Т.Кун указал также на аналогию между деятельностью по решению задач в процессе приложения теории и исторически предшествующей ей деятельностью по выработке исходных моделей, на основе которых затем решаются теоретические задачи.

Парадигмальные образцы работы с теоретическими моделями возникают в процессе формирования теории и включаются в ее состав как набор некоторых решенных задач, по образу и подобию которых должны решаться другие теоретические задачи. Трансляция теоретических знаний в культуре означает также трансляцию в культуре образцов деятельности по решению задач. В этих образцах запечатлены процедуры и операции генерирования новых гипотез (по схеме: картина мира - аналоговая модель - подстановка в модель новых абстрактных объектов). Поэтому при усвоении уже накопленных знаний (в процессе формирования ученого как специалиста) происходит усвоение и некоторых весьма общих схем мыслительной работы, обеспечивающих генерацию новых гипотез.

Трансляция в культуре схем мыслительной деятельности, обеспечивающих генерацию гипотез, позволяет рассмотреть процедуры такой генерации, абстрагируясь от личностных качеств и способностей того или иного исследователя. С этой точки зрения можно говорить о логике формирования гипотетических моделей как моменте логики формирования научной теории.

Наконец, в-третьих, резюмируя особенности процесса формирования гипотетических моделей науки, мы подчеркиваем, что в основе этого процесса лежит соединение абстрактных объектов, почерпнутых из одной области знания, со структурой ("сеткой отношений"), заимствованной в другой области знания. В новой системе отношений абстрактные объекты наделяются новыми признаками, и это приводит к появлению в гипотетической модели нового содержания, которое может соответствовать еще неисследованным связям и отношениям предметной области, для описания и объяснения которой предназначается выдвигаемая гипотеза.

Отмеченная особенность гипотезы универсальна. Она проявляется как на стадии формирования частных теоретических схем, так и при построении развитой теории.

Взаимодействие операций выдвижения гипотезы и ее конструктивного обоснования является тем ключевым моментом, который позволяет получить ответ на вопрос о путях появления в составе теории парадигмальных образцов решения задач.

Поставив проблему образцов, западная философия науки не смогла найти соответствующих средств ее решения.

При обсуждении проблемы образцов Т.Кун и его последователи акцентируют внимание только на одной стороне вопроса - роли аналогий как основы решения задач. Операции же формирования и обоснования возникающих в этом процессе теоретических схем выпадают из сферы их анализа.

Весьма показательно, что в рамках этого подхода возникают принципиальные трудности при попытках выяснить, какова роль правил соответствия и их происхождение. Т. Кун, например, полагает, что в деятельности научного сообщества эти правила не играют столь важной роли, которую им традиционно приписывают методологи. Он специально подчеркивает, что главным в решении задач является поиск аналогий между различными физическими ситуациями и применение на этой основе уже найденных формул. Что же касается правил соответствия, то они, по мнению Куна, являются результатом последующей методологической ретроспекции, когда методолог пытается уточнить критерии, которыми пользуется научное сообщество, применяя те или иные аналогии.

После того как теория построена, ее дальнейшая судьба связана с ее развитием в процессе расширения области приложения теории.

Этот процесс функционирования теории неизбежно приводит к формированию в ней новых образцов решения задач. Они включаются в состав теории наряду с теми, которые были введены в процессе ее становления. Первичные образцы с развитием научных знаний и изменением прежней формы теории также видоизменяются, но в видоизмененной форме они, как правило, сохраняются во всех дальнейших изложениях теории. Даже самая современная формулировка классической электродинамики демонстрирует приемы применения уравнений Максвелла к конкретным физическим ситуациям на примере вывода из этих уравнений законов Кулона, Био-Савара, Фарадея. Теория как бы хранит в себе следы своей прошлой истории, воспроизводя в качестве типовых задач и приемов их решения, основные особенности процесса своего формирования.

С развитием науки меняется стратегия теоретического поиска. В частности, в современной физике теория создается иными путями, чем в классической. Построение современных физических теорий осуществляется методом математической гипотезы. Этот путь построения теории может быть охарактеризован как четвертая ситуация развития теоретического знания. В отличие от классических образцов, в современной физике построение теории начинается с формирования ее математического аппарата, а адекватная теоретическая схема, обеспечивающая его интерпретацию, создается уже после построения этого аппарата.

Процесс формирования теоретического знания осуществляется на различных стадиях эволюции науки различными способами и методами, но каждая новая ситуация теоретического поиска не просто устраняет ранее сложившиеся приемы и операции формирования теории, а включает их в более сложную систему приемов и методов.

Глава 6

НАУЧНЫЕ ТРАДИЦИИ И НАУЧНЫЕ РЕВОЛЮЦИИ.

ТИПЫ НАУЧНОЙ РАЦИОНАЛЬНОСТИ


Похожая информация.


  • X. Реформирование Петром I хозяйственной жизни страны и характерные черты социально-экономического развития России в первой четверти XVIII в.
  • Анализ спроса на продукцию и формирование портфеля заказов
  • Асссортиментная политика предприятия и ее влияние на формирование прибыли
  • Ацтеки имели очень хорошо поставленное образование, преподавались такие дисциплины, как: религия, астрономия, история законов, медицина, музыка и искусство войны.
  • Банковская система: понятие, типы, структура. Формирование и развитие банковской системы России
  • Билет 20. Преодоление политической раздробленности и формирование национальных государств.
  • Билет 22. Формирование древнерусской государственности. Принятие христианства. Культура и быт Древней Руси.
  • Теоретическая модель - это универсальное средство современно­го научного познания, которое служит тому, чтобы воспроизвести и закрепить в знаковой форме строение, свойства и поведение реаль­ных объектов. Теоретические модели дают возможность в нагляд­ной форме воссоздать объекты и процессы, недоступные для не­посредственного восприятия (например, модель атома, модель Вселенной, модель генома человека и пр.) в ситуации, когда нет прямого доступа к реальности. Теоретические модели, будучи конструкциями и идеализациями, направленными на воспроиз­ведение инвариантных взаимосвязей действующих в системе эле­ментов, являются своеобразной формой репрезентации (пред­ставления) объективного мира. Теоретические модели позволяют рассматривать реальность с точки зрения «системы наблюдателя». Научное сообщество рассматривает теоретическое моделирование как важный и необходимый инструмент и одновременно как этап исследовательского процесса. Теоретическое моделирование сви­детельствует о строгости, упорядоченности и рациональности про­цесса научного познания.

    Первичные теоретические модели наиболее тесно привязаны к данным, полученным эмпирическим путем, предполагают их обоб­щение с учетом объясняющей гипотезы. По сути своей они пред­лагают вниманию исследователей некий артефакт (искусственно созданный объект). Иными словами, первичные теоретические модели предполагают доступную и непротиворечивую имитацию действия основных законов функционирования того или иного процесса.

    Важными характеристиками теоретической модели являются: (а) структурность, (б) возможность переноса абстрактных объек­тов из других областей знания. В первичных теоретических моде-


    лях должны быть учтены физические, функциональные, геомет­рические или динамические характеристики реальных процессов. Они претендуют на «признанность» и иллюстративность, с одной стороны, и на свое дальнейшее уточнение и трансформацию, с другой. Важно отметить «неокончательный» характер первичных теоретических моделей, которые могут уточняться в результате активного экспериментирования, получения новых данных на­блюдений, обнаружения новых фактов или появления новой тео­рии. Отечественный философ науки B.C. Степин считает, что на ран­них стадиях научного исследования теоретические модели создаются путем непосредственной схематизации опыта.

    Для того чтобы первичная теоретическая модель была принята, она должна иметь «объясняющую силу» и быть изоморфной ре­альным процессам. Информативность и самодостаточность - это важные характеристики истинных теоретических моделей, которые помогают познать существующие закономерности мира. В истории науки не редки случаи, когда первичные теоретические модели оказывались «неработающими». Важно подчеркнуть, что хотя для теоретической модели важно качество «похожести», они воспро­изводят реальность в идеальном, предельно совершенном виде. Но если идеализация - это мысленное конструирование объектов несу­ществующих или неосуществленных в параметрах данного мира, то теоретическая модель - это конструирование глубинных взаимосвя­зей реально существующих процессов. Теоретические модели фик­сируют предположительно истинные ситуации.

    Как считают современные философы науки, например И. Лака-тос, процесс формирования первичных теоретических моделей может опираться на следующие методологические программы: (а) евклидову; (б) эмпиристскую; (в) индуктивистскую. Евклидова программа, в которой аксиоматическое построение считается об­разцовым, предполагает, что все знания можно дедуцировать из изначального конечного множества самоочевидных истин, состо­ящих из терминов с тривиальной смысловой нагрузкой. Знание как истина вводится на верхушку теории и без какой-либо дефор­мации «стекает» от терминов-примитивов к определяемым терми-


    нам. Эту программу принято называть программой тривиализа-ции знания. И, если евклидианская теория располагает истину наверху и освещает ее естественным светом разума, то эмпиристс-кая - располагает истину внизу и освещает светом опыта. Эмпи-ристская программа строится на основе базовых положений, име­ющих общеизвестный эмпирический характер. Важно подчеркнуть, что обе программы включают и признают момент логической инту­иции. В индуктивистской программе «изгнанный с верхнего уров­ня разум стремится найти прибежище и сооружает канал, посред­ством которого истина течет снизу вверх от базисных положений. «Власть» передается фактам и устанавливается дополнительный логический принцип - ретрансляции истины» (Лакатос). Можно согласиться с выводами И. Лакатоса, что утверждается та теорети­ческая модель, которая имеет большее эмпирическое содержание, чем предшествующая. Чтобы соотнести теоретическую модель с действительностью, зачастую необходима длинная цепочка логи­ческих выводов и следствий.

    Теоретические модели не могут быть построены без своих важ­ных элементов - абстрактных (от лат. abstrahere - извлекать, от­делять) объектов, представляющих собой отвлечение тех или иных свойств и характеристик из состава целостного явления и пере­стройку (или «дорисовку») этих извлеченных свойств в самостоя­тельный объект. Примеры абстрактных объектов: «идеальный газ», «абсолютное твердое тело», «точка», «сила», «окружность», «отре­зок», «рынок совершенной конкуренции» и пр. Выбор тех или иных абстрактных объектов связан с определенным «интеллектуальным риском». Огромное значение абстрактных объектов видно уже из того факта, что отвлечение протяженности тел от их массы обес­печило начало геометрии, а противоположное абстрагирование массы от протяженности послужило началом механики. На выбор тех или иных абстрактных объектов оказывает существенное вли­яние научная картина мира.

    Абстрактные объекты, являясь идеализациями действительнос­ти, называют также теоретическими конструктами, или теорети­ческими объектами. В них могут содержаться как признаки, кото-


    рые соответствуют реальным объектам, так идеализированная (мысленно сконструированная) предметность, свойствами кото­рой не обладает ни один реальный объект. Абстрактные объекты замещают те или иные связи действительности, но они не могут обладать статусом реальных физических объектов, так как пред­ставляют собой идеализации. Считается, что абстрактный объект намного проще реального.

    Поскольку первичные теоретические модели носят преимуще­ственно гипотетический характер, для них важно иметь фактуаль-ное подтверждение, и, следовательно, методологической нормой становится этап их обоснования, в процессе которого они адапти­руются к определенной совокупности экспериментов. В против­ном случае можно столкнуться с ситуацией произвола ученых и псевдонаучного теоретизирования. Поэтому за этапом создания теоретической модели следует этап ее применения к качественно­му многообразию вещей, т. е. ее качественное расширение, после которого следует этап количественного математического оформ­ления в виде уравнения или формулы. Это и знаменует собой фазу появления формулировки закона, хотя на всех без исключения стадиях реально осуществляется корректировка и самих абстрак­тных объектов, и их теоретических схем, а также количественных математических формализации. В. С. Степин подчеркивает, что «в классической физике можно говорить о двух стадиях построения частных теоретических схем как гипотез: стадии их конструирова­ния в качестве содержательно-физических моделей некоторой об­ласти взаимодействий и стадии возможной перестройки теорети­ческих моделей в процессе их соединения с математическим аппаратом». Законы отражают наиболее существенные, необходимые и повторяющиеся связи и взаимодействия процессов и явлений универ­сума. Закон отражает объективно существующие взаимодействия в природе и в этом смысле понимается как природная закономер­ность.

    Модели играют большую роль в научно-теоретическом познании. Они позволяют представить в наглядной форме объекты и процессы, недоступные для непосредственного восприятия: например, модель атома, модель Вселенной, модель генома человека и пр. Теоретические модели отражают строение, свойства и поведение реальных объектов. Построение научной модели является результатом взаимодействия субъекта научно-познавательной деятельности с реальностью. Существует точка зрения, согласно которой первичные модели можно оценивать как метафоры, основанные на наблюдениях и выводах, сделанных на основании наблюдений, способствующих наглядному представлению и сохранению информации. Известный западный философ науки И. Лакатос отмечал, что процесс формирования первичных теоретических моделей может опираться на программы троякого рода: во-первых, - это система Евклида (Евклидова программа), во-вторых, - эмпиристская программа и, в-третьих, - индуктивистская программа. …
    Все три программы исходят из организации знания как дедуктивной системы.

    Евклидианскую программу, которая предполагает, что все можно дедуцировать из конечного множества тривиальных истинных высказываний, состоящих только из терминов с тривиальной смысловой нагрузкой, принято называть программой тривиализации знания. Данная программа содержит сугубо истинные суждения, но она не работает ни с предположениями, ни с опровержениями. Знание как истина вводится на верхушку теории и без какой-либо деформации «стекает» от терминов-примитивов к определяемым терминам.

    В отличие от Евклидовой, эмпиристская программа строится на основе базовых положений, имеющих общеизвестный эмпирический характер. Эмпиристы не могут допустить иного введения смысла, чем снизу теории. Если эти положения оказываются ложными, то данная оценка проникает вверх по каналам дедукции и наполняет всю систему. Следовательно, эмпиристская теория предположительна и фальсифицируема. И если евклидианская теория располагает истину наверху и освещает ее естественным светом разума, то эмпиристская - располагает ее внизу и освещает светом опыта. Но обе программы опираются на интуицию.

    Об индуктивистской программе Возникновение индуктивистской программы было связано с темными докоперниканскими временами Просвещения, когда опровержение считалось неприличным, а догадки презирались Индуктивная логика была заменена вероятностной логикой. Окончательный удар по индуктивизму был нанесен Поппером, который показал, что снизу вверх не может идти даже частичная передача истины и значения.

    По мнению академика В. С. Степина, «главная особенность теоретических схем состоит в том, что они не являются результатом чисто дедуктивного обобщения опыта». В развитой науке теоретические схемы вначале строятся как гипотетические модели с использованием ранее сформулированных абстрактных объектов. На ранних стадиях научного исследования конструкты теоретических моделей создаются путем непосредственной схематизации опыта.

    Важными характеристиками теоретической модели являются ее структурность, а также возможность переноса абстрактных объектов из других областей знания. По Лакатосу, к основным структурным единицам следует причислять жесткое ядро, пояс защитных гипотез, положительная и отрицательная эвристика. Отрицательная эвристика запрещает применять опровержения к жесткому ядру программы.

    Теоретические объекты передают смысл таких понятий, как «идеальный газ», «абсолютное черное тело», «точка», «сила», « окружность», «отрезок» и пр. В реальности не существует изолированных систем, которые бы не испытывали никаких воздействий, поэтому вся классическая механика, ориентированная на закрытые системы, построена с помощью теоретических конструктов.

    Как протекает процесс формирования законов?

    Понятие «закон» указывает на наличие внутренне необходимых, устойчивых и повторяющихся связей между событиями и состояниями объектов. Закон отражает объективно существующие взаимодействия в природе и в этом смысле понимается как природная закономерность. Законы науки, направленные на отражение природной закономерности, формулируются с использованием искусственных языков своей дисциплинарной области. Законы, выработанные человеческим сообществом как нормы человеческого сосуществования, значительно отличаются от законов естественных наук и имеют, как правило, конвенциальный характер. Выделяют «вероятностные» (статистические) законы, основанные на вероятностных гипотезах относительно взаимодействия большого числа элементов, и «динамические» законы, т.е. законы в форме универсальных условий.

    Законы науки отражают наиболее общие и глубинные природные и социальные взаимодействия, они стремятся к адекватному отображению закономерностей природы. Однако сама мера адекватности и то, что законы науки есть обобщения, которые изменчивы и подвержены опровержению, вызывает к жизни весьма острую философско-методологическую проблему о природе законов. Не случайно Кеплер и Коперник понимали законы науки как гипотезы. Кант вообще был уверен, что законы не извлекаются из природы, а предписываются ей.

    Формирование законов предполагает, что обоснованная экспериментально или эмпирически гипотетическая модель имеет возможность для превращения в схему. Причем теоретические схемы вводятся вначале как гипотетические конструкции, но затем они адаптируются к определенной совокупности экспериментов и в этом процессе обосновываются как обобщение опыта. Затем должен следовать этап ее применения к качественному многообразию вещей, т. е. ее качественное расширение. И лишь после этого - этап количественного математического оформления в виде уравнения или формулы, что и знаменует собой фазу появления закона. Итак, модель - схема - качественные и количественные расширения - метаматизация - формулировка закона - вот апробированная наукой цепочка.

    На всех без исключения стадиях научного исследования реально осуществляется как корректировка самих абстрактных объектов, так и их теоретических схем, а также их количественных математических формализации. Теоретические схемы также могли видоизменяться под воздействием математических средств, однако все эти трансформации оставалась в пределах выдвинутой гипотетической модели. B.C. Степин подчеркивает, что «в классической физике можно говорить о двух стадиях построения частных теоретических схем как гипотез: стадии их конструирования в качестве содержательно-физических моделей некоторой области взаимодействий и стадии возможной перестройки теоретических моделей в процессе их соединения с математическим аппаратом». На высших стадиях развития эти два аспекта гипотезы сливаются, а на ранних они разделены.

    Научные исследования в различных областях стремятся не просто обобщить определенные события в мире нашего опыта, но и выявить регулярности в течении этих событий, установить общие законы, которые могут быть использованы для предсказания и объяснения.

    Модели играют большую роль в научно-теоретическом познании. Они позволяют представить в наглядной форме объекты и процессы, недоступные для непосредственного восприятия: например, модель атома, модель Вселенной, модель генома человека и пр. Теоретические модели отражают строение, свойства и поведение реальных объектов. Построение научной модели является результатом взаимодействия субъекта научно-познавательной деятельности с реальностью. Существует точка зрения, согласно которой первичные модели можно оценивать как метафоры, основанные на наблюдениях и выводах, сделанных на основании наблюдений, способствующих наглядному представлению и сохранению информации. Известный западный философ науки И. Лакатос отмечал, что процесс формирования первичных теоретических моделей может опираться на программы троякого рода: во-первых, - это система Евклида (Евклидова программа), во-вторых, - эмпиристская программа и, в-третьих, - индуктивистская программа. Все три программы исходят из организации знания как дедуктивной системы.

    Евклидианскую программу, которая предполагает, что все можно дедуцировать из конечного множества тривиальных истинных высказываний, состоящих только из терминов с тривиальной смысловой нагрузкой, принято называть программой тривиализации знания. Данная программа содержит сугубо истинные суждения, но она не работает ни с предположениями, ни с опровержениями. Знание как истина вводится на верхушку теории и без какой-либо деформации «стекает» от терминов-примитивов к определяемым терминам.

    В отличие от Евклидовой, эмпиристская программа строится на основе базовых положений, имеющих общеизвестный эмпирический характер. Эмпиристы не могут допустить иного введения смысла, чем снизу теории. Если эти положения оказываются ложными, то данная оценка проникает вверх по каналам дедукции и наполняет всю систему. Следовательно, эмпиристская теория предположительна и фальсифицируема. И если евклидианская теория располагает истину наверху и освещает ее естественным светом разума, то эмпиристская - располагает ее внизу и освещает светом опыта. Но обе программы опираются на интуицию.

    Об индуктивистской программе Возникновение индуктивистской программы было связано с темными докоперниканскими временами Просвещения, когда опровержение считалось неприличным, а догадки презирались Индуктивная логика была заменена вероятностной логикой. Окончательный удар по индуктивизму был нанесен Поппером, который показал, что снизу вверх не может идти даже частичная передача истины и значения.

    По мнению академика В. С. Степина, «главная особенность теоретических схем состоит в том, что они не являются результатом чисто дедуктивного обобщения опыта». В развитой науке теоретические схемы вначале строятся как гипотетические модели с использованием ранее сформулированных абстрактных объектов. На ранних стадиях научного исследования конструкты теоретических моделей создаются путем непосредственной схематизации опыта.


    Важными характеристиками теоретической модели являются ее структурность, а также возможность переноса абстрактных объектов из других областей знания. По Лакатосу, к основным структурным единицам следует причислять жесткое ядро, пояс защитных гипотез, положительная и отрицательная эвристика. Отрицательная эвристика запрещает применять опровержения к жесткому ядру программы.

    Теоретические объекты передают смысл таких понятий, как «идеальный газ», «абсолютное черное тело», «точка», «сила», « окружность», «отрезок» и пр. В реальности не существует изолированных систем, которые бы не испытывали никаких воздействий, поэтому вся классическая механика, ориентированная на закрытые системы, построена с помощью теоретических конструктов.

    Как протекает процесс формирования законов?

    Понятие «закон» указывает на наличие внутренне необходимых, устойчивых и повторяющихся связей между событиями и состояниями объектов. Закон отражает объективно существующие взаимодействия в природе и в этом смысле понимается как природная закономерность. Законы науки, направленные на отражение природной закономерности, формулируются с использованием искусственных языков своей дисциплинарной области. Законы, выработанные человеческим сообществом как нормы человеческого сосуществования, значительно отличаются от законов естественных наук и имеют, как правило, конвенциальный характер. Выделяют «вероятностные» (статистические) законы, основанные на вероятностных гипотезах относительно взаимодействия большого числа элементов, и «динамические» законы, т.е. законы в форме универсальных условий.

    Законы науки отражают наиболее общие и глубинные природные и социальные взаимодействия, они стремятся к адекватному отображению закономерностей природы. Однако сама мера адекватности и то, что законы науки есть обобщения, которые изменчивы и подвержены опровержению, вызывает к жизни весьма острую философско-методологическую проблему о природе законов. Не случайно Кеплер и Коперник понимали законы науки как гипотезы. Кант вообще был уверен, что законы не извлекаются из природы, а предписываются ей.

    Формирование законов предполагает, что обоснованная экспериментально или эмпирически гипотетическая модель имеет возможность для превращения в схему. Причем теоретические схемы вводятся вначале как гипотетические конструкции, но затем они адаптируются к определенной совокупности экспериментов и в этом процессе обосновываются как обобщение опыта. Затем должен следовать этап ее применения к качественному многообразию вещей, т. е. ее качественное расширение. И лишь после этого - этап количественного математического оформления в виде уравнения или формулы, что и знаменует собой фазу появления закона. Итак, модель - схема - качественные и количественные расширения - метаматизация - формулировка закона - вот апробированная наукой цепочка.

    На всех без исключения стадиях научного исследования реально осуществляется как корректировка самих абстрактных объектов, так и их теоретических схем, а также их количественных математических формализации. Теоретические схемы также могли видоизменяться под воздействием математических средств, однако все эти трансформации оставалась в пределах выдвинутой гипотетической модели. B.C. Степин подчеркивает, что «в классической физике можно говорить о двух стадиях построения частных теоретических схем как гипотез: стадии их конструирования в качестве содержательно-физических моделей некоторой области взаимодействий и стадии возможной перестройки теоретических моделей в процессе их соединения с математическим аппаратом». На высших стадиях развития эти два аспекта гипотезы сливаются, а на ранних они разделены.

    Научные исследования в различных областях стремятся не просто обобщить определенные события в мире нашего опыта, но и выявить регулярности в течении этих событий, установить общие законы, которые могут быть использованы для предсказания и объяснения.

    Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели.

    Рассмотрим процесс формирования теоретических моделей (схем).

    В развитой науке теоретические схемы вначале строятся как гипотетические модели (формирование теоретической модели как гипотезы ) за счет использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели.

    Выбор исследователем основных компонентов создаваемой гипотезы представляет собой творческий акт, и, кроме того, имеет определенные основания, которые создает принятая исследователем картина мира. Вводимые в ней представления о структуре природных взаимодействий позволяют обнаружить общие черты у различных предметных областей, изучаемых наукой. Тем самым картина мира "подсказывает", откуда можно заимствовать абстрактные объекты и структуру, соединение которых приводит к построению гипотетической модели новой области взаимодействий.

    После того как сформирована гипотетическая модель исследуемых взаимодействий, начинается стадия ее обоснования . Она не сводится только к проверке тех эмпирических следствий, которые можно получить из закона, сформулированного относительно гипотетической модели. Сама модель должна получить обоснование. При формировании гипотетической модели абстрактные объекты погружаются в новые отношения. Это как правило, приводит к наделению их новыми признаками. При этом исследователь допускает, что:

    • 1) новые, гипотетические признаки абстрактных объектов имеют основание именно в той области эмпирически фиксируемых явлений, на объяснение которых модель претендует;
    • 2) эти новые признаки совместимы с другими определяющими признаками абстрактных объектов, которые были обоснованы предшествующим развитием познания и практики.

    Признаки абстрактных объектов, гипотетически введенные "сверху" по отношению к экспериментам новой области взаимодействий, теперь восстанавливаются "снизу". Их получают в рамках мысленных экспериментов, соответствующих типовым особенностям тех реальных экспериментальных ситуаций, которые призвана объяснить теоретическая модель. После этого проверяют, согласуются ли новые свойства абстрактных объектов с теми, которые оправданы предшествующим опытом.

    Гипотетические модели обретают статус теоретических представлений о некоторой области взаимодействий только тогда, когда пройдут через процедуры эмпирического обоснования. Это особый этап построения теоретической схемы, на котором доказывается, что ее первоначальный гипотетический вариант может предстать как идеализированное изображение структуры именно тех экспериментально-измерительных ситуаций, в рамках которых выявляются особенности изучаемых в теории взаимодействий.