1 элементарные частицы. Элементарные частицы. Что такое спин

Нестабильные элементарные частицы

Все остальные элементарные частицы нестабильны, то есть самопроизвольно распадаются на другие частицы в свободном состоянии. Экспериментально установлено, что вероятность распада нестабильной элементарной частицы не зависит от продолжительности её существования и времени наблюдения за ней. Предсказать момент распада данной элементарной частицы невозможно. Можно предсказать лишь среднее время жизни большого числа частиц одного вида . Вероятность P {\displaystyle P} того, что частица распадется в течение ближайшего короткого промежутка времени δ t {\displaystyle \delta t} равна δ t τ {\displaystyle {\frac {\delta t}{\tau }}} и зависит лишь от постоянной τ {\displaystyle \tau } и не зависит от предыстории. Этот факт является одним из подтверждений принципа тождественности элементарных частиц . Получаем уравнение для зависимости числа частиц от времени: N P = N δ t τ = − δ t d N d t {\displaystyle NP={\frac {N\delta t}{\tau }}=-\delta t{\frac {dN}{dt}}} , d N d t = − N τ {\displaystyle {\frac {dN}{dt}}=-{\frac {N}{\tau }}} . Решение этого уравнения имеет вид : , где N 0 {\displaystyle N_{0}} - число частиц в начальный момент . Таким образом, время жизни нестабильной элементарной частицы является случайной величиной с экспоненциальным законом распределения .

Нестабильность частиц является одним из проявлений свойства взаимопревращаемости частиц, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Распад нестабильных элементарных частиц происходит вследствие их взаимодействия с нулевыми колебаниями того поля, которое ответственно за их распад. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы, если такие превращения не запрещены законами сохранения энергии, импульса, момента количества движения, электрического заряда, барионного заряда и др.

Время жизни элементарных частиц

Важной характеристикой элементарных частиц, наряду с массой, спином, электрическим зарядом является её время жизни. Временем жизни называется постоянная τ {\displaystyle \tau } в законе экспоненциального распада: N (t) = N 0 exp ⁡ (− t / τ) {\displaystyle N(t)=N_{0}\exp(-t/\tau)} . Например, время жизни нейтрона τ n = 880 {\displaystyle \tau _{n}=880} сек, время жизни заряженного пи-мезона τ π + = 2 , 6033 (5) × 10 − 8 {\displaystyle \tau _{\pi ^{+}}=2,6033(5)\times 10^{-8}} сек. Время жизни τ {\displaystyle \tau } нестабильных частиц зависит от вида взаимодействия, вызывающего их распад . Наибольшие времена жизни имеют элементарные частицы, чей распад вызван слабым взаимодействием (нейтрон - 880 {\displaystyle 880} сек, мюон - 2 , 2 × 10 − 6 {\displaystyle 2,2\times 10^{-6}} сек, заряженный пион - 2 , 6 × 10 − 8 {\displaystyle 2,6\times 10^{-8}} сек, гиперон - 10 − 10 − 10 − 8 {\displaystyle 10^{-10}-10^{-8}} сек, каон - 1 , 2 × 10 − 8 {\displaystyle 1,2\times 10^{-8}} сек). Меньшие времена жизни имеют элементарные частицы, чей распад вызван электромагнитным взаимодействием (нейтральный пион - 8 , 2 × 10 − 17 {\displaystyle 8,2\times 10^{-17}} сек, эта-мезон - 5 , 1 × 10 − 19 {\displaystyle 5,1\times 10^{-19}} сек). Наименьшие времена жизни имеют резонансы - 10 − 24 − 10 − 22 {\displaystyle 10^{-24}-10^{-22}} сек.

Для короткоживущих частиц (резонансов) вместо времени жизни используется ширина, обладающая размерностью энергии: Γ = ℏ τ {\displaystyle \Gamma ={\frac {\hbar }{\tau }}} . Это следует из соотношения неопределённостей между энергией и временем Δ E Δ t ≈ ℏ {\displaystyle \Delta E\Delta t\approx \hbar } . Например, масса нуклонной изобары Δ {\displaystyle \Delta } равна 1236 Мэв, а её ширина - 120 Мэв ( τ ≈ 5 × 10 − 24 {\displaystyle \tau \approx 5\times 10^{-24}} с), что составляет около 10% от массы .

Вероятность распада ω {\displaystyle \omega } характеризует интенсивность распада нестабильных частиц и равна доле частиц некоторого ансамбля, распадающейся в единицу времени: ω = 1 τ {\displaystyle \omega ={\frac {1}{\tau }}} , где τ {\displaystyle \tau } - время жизни элементарной частицы .

Многие элементарные частицы имеют несколько способов распада. В этом случае общая вероятность распада частицы за некоторое время равна сумме вероятностей распада по различным способам: 1 τ = 1 τ 1 + 1 τ 2 + . . . + 1 τ N {\displaystyle {\frac {1}{\tau }}={\frac {1}{\tau _{1}}}+{\frac {1}{\tau _{2}}}+...+{\frac {1}{\tau _{N}}}} , где N {\displaystyle N} - число способов распада, τ {\displaystyle \tau } - время жизни. Относительная вероятность распада по i {\displaystyle i} -му способу равна: P i = 1 τ i 1 τ {\displaystyle P_{i}={\frac {\frac {1}{\tau _{i}}}{\frac {1}{\tau }}}} . Независимо от числа типов её распада, элементарная частица всегда имеет только одно время жизни τ {\displaystyle \tau } .

Время жизни элементарной частицы τ {\displaystyle \tau } и её период полураспада T 1 / 2 {\displaystyle T_{1/2}} связаны соотношением: T 1 / 2 = ln ⁡ 2 τ = 0 , 693 τ {\displaystyle T_{1/2}=\ln {2}\tau =0,693\tau }

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9 10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

К физике атомного ядра тесно прилегает физика элементарных частиц. Эта область современной науки базируется на квантовых представлениях и в своем развитии всё дальше проникает в глубину материи, открывая загадочный мир ее первооснов. В физике элементарных частиц чрезвычайно велика роль теории. В силу невозможности прямого наблюдения таких материальных объектов их образы ассоциируются с математическими уравнениями, с наложенными на них запрещающими и разрешающими правилами.

По определению элементарные частицы — это первичные, неразложимые образования, из которых, по предположению, состоит вся материя. На самом же деле этот термин употребляется в более широком смысле — для обозначения обширной группы микрочастиц материи, структурно не объединенных в ядра и атомы. Большинство объектов исследования физики элементарных частиц не отвечают строгому определению элементарности, поскольку представляют собой составные системы. Поэтому частицы, удовлетворяющие этому требованию, принято называть истинно элементарными.

Первой элементарной частицей, открытой в процессе изучения микромира еще в конце XIX в., был электрон. Следующим был открыт протон (1919), затем пришла очередь нейтрона, открытого в 1932 г. Существование позитрона теоретически было предсказано П. Дираком в 1931 г., и в 1932 г. этот положительно заряженный «двойник» электрона был обнаружен в космических лучах Карлом Андерсоном. Предположение о существовании в природе нейтрино было выдвинуто В. Паули в 1930 г., а экспериментально оно было обнаружено только в 1953 г. В составе космических лучей в 1936 г. были найдены мю-мезоны (мюоны) — частицы обоих знаков электрического заряда с массой около 200 масс электрона. Во всем остальном свойства мюонов очень близки к свойствам электрона и позитрона. Также в космических лучах в 1947 г. были открыты положительный и отрицательный пи-мезоны, существование которых было предсказано японским физиком Хидэки Юкавой в 1935 г. В дальнейшем выяснилось, что существует также нейтральный пи-мезон.

В начале 50-х гг. была открыта большая группа частиц с весьма необычными свойствами, что побудило назвать их «странными». Первые частицы этой группы были обнаружены в космических лучах, это К-мезо- ны обоих знаков и К-гиперон (лямбда-гиперон). Отметим, что мезоны получили свое название от греч. «средний, промежуточный» в силу того, что массы первых открытых частиц этого типа (пи-мезоны, мю-мезоны) имеют массу, промежуточную между массой нуклона и электрона. Гипероны же ведут свое название от греч. «сверх, выше», поскольку их массы превышают массу нуклона. Последующие открытия странных частиц делались уже на ускорителях заряженных частиц, которые стали основным инструментом изучения элементарных частиц.

Так были открыты антипротон, антинейтрон и ряд гиперонов. В 60-е гг. было обнаружено значительное число частиц с крайне малым временем жизни, которые получили названиерезонансов. Как выяснилось, к резонансам относится большинство известных элементарных частиц. В середине 70-х гг. было открыто новое семейство элементарных частиц, получивших романтическое название «очарованных», а в начале 80-х — семейства «красивых» частиц и так называемых промежуточных векторных бозонов. Открытие этих частиц явилось блестящим подтверждением теории, основанной на кварковой модели элементарных частиц, которая предсказала существование новых частиц задолго до их обнаружения.

Таким образом, за время после открытия первой элементарной частицы — электрона — в природе выявлено множество (около 400) микрочастиц материи, и процесс открытия новых частиц продолжается. Оказалось, что мир элементарных частиц устроен весьма и весьма сложно, а их свойства разнообразны и зачастую крайне неожиданны.

Все элементарные частицы являются материальными образованиями чрезвычайно малых масс и размеров. Большинство из них имеют массы порядка массы протона (~10 -24 г) и размеры порядка 10 -13 м. Это определяет сугубо квантовую специфику их поведения. Важное квантовое свойство всех элементарных частиц (включая и относящийся к ним фотон) состоит в том, что все процессы с ними происходят в виде последовательности актов их испускания и поглощения (способность рождаться и уничтожаться при взаимодействии с другими частицами). Процессы с участием элементарных частиц относятся ко всем четырем видам фундаментального взаимодействия, сильному, электромагнитному, слабому и гравитационному. Сильным взаимодействием обусловлена связь нуклонов в атомном ядре. Электромагнитное взаимодействие обеспечивает связь электронов с ядрами в атоме, а также связь атомов в молекулах. Слабое взаимодействие вызывает, в частности, распад квазистабильных (т. е. относительно долгоживущих) частиц, имеющих время жизни в пределах 10 -12 -г 10 -14 с. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях ~10 -13 см, в силу малости их массы, имеет крайне малую интенсивность, однако может оказаться существенным на сверхмалых расстояниях. Интенсивности взаимодействий, сильного, электромагнитного, слабого и гравитационного — при умеренной энергии процессов относятся соответственно как 1 , 10 -2 , 10 -10 , 10 -38 . Вообще же с ростом энергии частиц это соотношение изменяется.

Элементарные частицы классифицируют по различным признакам, и надо сказать, что в целом принятая их классификация достаточно сложна.

В зависимости от участия в различных видах взаимодействия все известные частицы делят на две основные группы: адроны и лептоны.

Адроны участвуют во всех видах взаимодействия, включая сильное. Они получили свое название от греч. «большой, сильный».

Лептоны не участвуют в сильном взаимодействии. Их название происходит от греч. «легкий, тонкий», поскольку массы известных до середины 70-х гг. частиц этого класса были заметно меньше масс всех других частиц (кроме фотона).

К адронам относятся все барионы (группа частиц с массой не меньше массы протона, названных так от греч. «тяжелый») и мезоны. Самым легким барионом является протон.

Лептонами являются, в частности, электрон и позитрон, мюоны обоих знаков, нейтрино трех видов (легкие, электрически нейтральные частицы, участвующие только в слабом и гравитационном взаимодействиях). Предполагается, что нейтрино столь же распространены в природе, как и фотоны, к их образованию приводит множество различных процессов. Отличительной особенностью нейтрино является его огромная проникающая способность, особенно при низких энергиях. Завершая классификацию по видам взаимодействия, следует отметить, что фотон принимает участие только в электромагнитном и гравитационном взаимодействиях. Кроме того, в соответствии с теоретическими моделями, направленными на объединение всех четырех видов взаимодействия, существует гипотетическая частица, переносящая гравитационное поле, которая получила название гравитон. Особенность гравитона состоит в том, что он (согласно теории) участвует только в гравитационном взаимодействии. Заметим, что теория связывает с квантовыми процессами гравитационного взаимодействия еще две гипотетические частицы — гра- витино и гравифотон. Экспериментальное обнаружение гравитонов, т. е., по сути, гравитационного излучения, крайне затруднено из-за его чрезвычайно слабого взаимодействия с веществом.

В зависимости от времени жизни элементарные частицы разделяют на стабильные, квазистабильные и нестабильные (резонансы).

Стабильными частицами являются электрон (его время жизни t > 10 21 лет), протон (t > 10 31 лет), нейтрино и фотон. Квазистабильными считаются частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их время жизни t > 10 -20 c. Резонансы — частицы, распадающиеся в результате сильного взаимодействия, их время жизни находится в интервале 10 -22 ^10 -24 с.

Распространенным является еще один вид подразделения элементарных частиц. Системы частиц с нулевым и целым спином подчиняются статистике Бозе-Эйнштейна, поэтому такие частицы принято называть бозонами. Совокупность же частиц с полуцелым спином описывается статистикой Ферми-Дирака, отсюда и название таких частиц — фермионы.

Каждая элементарная частица характеризуется определенным набором дискретных физических величин — квантовых чисел. Общими для всех частиц характеристиками являются масса m, время жизни t, спин J и электрический заряд Q. Спин элементарных частиц принимает значения, равные целым или полуцелым кратным постоянной Планка. Электрические заряды частиц являются целыми кратными величине заряда электрона, считающегося элементарным электрическим зарядом.

Кроме того, элементарные частицы дополнительно характеризуются так называемыми внутренними квантовыми числами. Лептонам приписывается специфический лептонный заряд L = ±1, адроны с полуцелым спином несут барионный заряд В =±1 (адроны с В = 0 образуют подгруппу мезонов).

Важной квантовой характеристикой адронов является внутренняя четность Р, принимающая значение ±1 и отражающая свойство симметрии волновой функции частицы относительно пространственной инверсии (зеркального отображения). Несмотря на несохранение четности при слабом взаимодействии, частицы с хорошей точностью принимают значения внутренней четности, равные либо +1, либо -1.

Адроны, кроме того, подразделяются на обычные частицы (протон, нейтрон, пи-мезоны), странные частицы (^-мезоны, гипероны, некоторые резонансы), «очарованные» и «красивые» частицы. Им соответствуют особые квантовые числа: странность S, очарование С и красота b. Эти квантовые числа введены в соответствии с кварковой моделью для истолкования специфических процессов, характерных для этих частиц.

Среди адронов имеются группы (семейства) частиц с близкими массами, одинаковыми внутренними квантовыми числами, но различающиеся электрическим зарядом. Такие группы называются изотопическими мулътипле- тами и характеризуются общим квантовым числом — изотопическим спином, принимающим, как и обычный спин, целые и полуцелые значения.

В чем состоит уже неоднократно упоминавшаяся кварковая модель адронов?

Обнаружение закономерности группировки адронов в мультиплеты послужило основанием для предположения о существовании особых структурных образований, из которых построены адроны, — кварков. Допуская существование таких частиц, можно считать, что все адроны являются комбинациями кварков. Эта смелая и эвристически продуктивная гипотеза была выдвинута в 1964 г. американским физиком Марри Гелл-Маном. Суть ее состояла в предположении о наличии трех фундаментальных частиц с полуцелым спином, являющихся материалом для построения адронов, u-, d- и s-кварков. В дальнейшем на основе новых экспериментальных данных кварковая модель строения адронов пополнилась еще двумя кварками, «оча- рованным» (с) и «красивым» (b). Считается возможным существование и других типов кварков. Отличительная особенность кварков состоит в том, что они обладают дробными значениями электрического и барионного зарядов, не встречающимися ни у одной из известных частиц. С кварковой моделью согласуются все экспериментальные результаты по изучению элементарных частиц.

Согласно кварковой модели, барионы состоят из трех кварков, мезоны — из кварка и антикварка. Поскольку некоторые барионы являются комбинацией трех кварков в одном и том же состоянии, что запрещено принципом Паули (см. выше), каждому типу («аромату») кварка было приписано дополнительное внутреннее квантовое число «цвет». Кварк каждого типа («аромата» — u, d, s, c, b) может находиться в трех «цветовых» состояниях. В связи с использованием цветовых понятий теория сильного взаимодействия кварков получила название квантовой хромодинамики (от греч. «цвет»).

Можно считать, что кварки являются новыми элементарными частицами, причем они претендуют на роль истинно элементарных частиц для адронной формы материи. Однако остается неразрешенной проблема наблюдения свободных кварков и глюонов. Несмотря на систематические поиски в космических лучах, на ускорителях высокой энергии, обнаружить их в свободном состоянии пока так и не удалось. Имеются веские основания считать, что здесь физика столкнулась с особым явлением природы — так называемым удержанием кварков.

Дело в том, что существуют серьезные теоретические и экспери- ментальные доводы в пользу предположения о том, что силы взаимодействия кварков с расстоянием не ослабевают. Это означает, что для разделения кварков требуется бесконечно большая энергия, следовательно, появление кварков в свободном состоянии невозможно. Это обстоятельство придает кваркам статус совершенно особых структурных единиц вещества. Возможно, именно начиная с кварков принципиально невозможно опытное наблюдение ступеней дробления материи. Признание кварков в качестве реально существующих объектов материального мира не только олицетворяет собой яркий случай первичности идеи по отношению к существованию материальной сущности. Встает вопрос о пересмотре таблицы фундаментальных мировых постоянных, ибо заряд кварка втрое меньше заряда протона, а следовательно, и электрона.

Начиная с открытия позитрона наука встретилась с частицами антивещества. Сегодня очевидным является то, что для всех элементарных частиц с ненулевыми значениями хотя бы одного из квантовых чисел, таких как электрический заряд Q, лептонный заряд L, барионный заряд В, странность S, очарование С и красота b, существуют античастицы с теми же значениями массы, времени жизни, спина, но с противоположными знаками вышеуказанных квантовых чисел. Известны частицы, тождественные своим античастицам, они называются истинно нейтральными. Примерами истинно нейтральных частиц служат фотон и один из трех пи-мезонов (два других являются по отношению друг к другу частицей и античастицей).

Характерной особенностью взаимодействия частиц и античастиц является их аннигиляция при столкновении, т. е. взаимоуничтожение с образованием других частиц и выполнением законов сохранения энергии, импульса, заряда и т. п. Типичным примером аннигиляции пары является процесс превращения электрона и его античастицы — позитрона — в электромагнитное излучение (в фотоны или гамма-кванты). Аннигиляция пар происходит не только при электромагнитном взаимодействии, но и при сильном взаимодействии. При высоких энергиях легкие частицы могут аннигилировать с образованием более тяжелых частиц — при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжелых частиц (равный сумме их энергий покоя).

При сильном и электромагнитном взаимодействиях имеет место полная симметрия между частицами и их античастицами, т. е. все процессы, происходящие между первыми, возможны и для вторых. Поэтому антипротоны и антинейтроны могут образовывать ядра атомов антивещества, т. е. из античастиц в принципе вполне может быть построено антивещество. Возникает очевидный вопрос: если каждая частица имеет античастицу, то почему же в изученной области Вселенной отсутствуют скопления антивещества? Действительно, о наличии их во Вселенной, даже где-то «вблизи» Вселенной, можно было бы судить по мощному аннигиляционно- му излучению, приходящему к Земле из области соприкосновения вещества и антивещества. Однако современная астрофизика не располагает данными, которые позволили бы хотя бы предположить наличие во Вселенной областей, заполненных антивеществом.

Как же произошел во Вселенной выбор в пользу вещества и в ущерб антивеществу, хотя законы симметрии в основном выполняются? Причиной этого феномена, скорее всего, стало именно нарушение симметрии, т. е. флуктуация на уровне основ материи.

Ясно одно: если бы такой флуктуации не возникло, участь Вселенной была бы печальной — вся ее материя существовала бы в виде бесконечного облака фотонов, появившихся в результате аннигиляции частиц вещества и антивещества.

1. Элементарные частицы - это микрообъекты, размеры которых не превышают размеров атомных ядер. К элементарным частицам относятся протоны, нейтроны, электро­ны, мезоны, нейтрино, фотоны и др.

Выражение элементарные частицы не следует понимать как бесструктурные части­цы, не способные к превращениям. Содержание любого научного термина по мере развития науки постепенно уходит от его этимологии. Так, атом оставался в представлениях людей неделимым вплоть до возникновения в начале XIX в. химической атомистики, В современ­ном научном знании атом - это сложная динамическая система, способная к многообразным перестройкам. Так и элементарные частицы по мере открытия их новых свойств обнаружи­вают все более сложную их структуру.

Наиболее важным свойством элементарных частиц является их способность рож­даться и взаимопревращаться друг в друга при столкновениях. Для протекания таких про­цессов необходимо, чтобы сталкивающиеся частицы обладали большой энергией. Поэтому физику элементарных частиц называют также физикой высоких энергий.

По времени жизни все элементарные частицы делятся на три группы: стабильные, не­стабильные и резонансы.

Стабильные частицы существуют в свободном состоянии неограниченно долго Та­ких частиц всего 11: протон р, электрон е, электронное нейтрино ν 0 , мюонное нейтрино νμ , таонное нейтрино ντ , их античастицы р, е, ν e , νμ, ντ, и плюс фотон γ. Опытные факты спон­танного распада этих частиц пока неизвестны.

Нестабильные частицы имеют среднее время жизни τ. которое очень велико по сравнению с характерным временем ядерного пролёта 10 -23 с (времени прохождения светом поперечника ядер). Например, у нейтрона τ =16 мин, у мюона τ=10 -6 с, у наряженного пиона τ= 10 -8 с, у гиперонов и каонов τ=10 -4 с.

Резонансы имеют времена жизни, соизмеримые с пролётным временем 10 -23 с. Регистрируются они по резонансам на кривых зависимости сечений реакции от энергии. Многие резонансы толкуются как возбужденные состояния нуклонов и других частиц.

2. Фундаментальные взаимодействия . Вес многообразие взаимодействий, наблюдающихся между элементарными частицами и в природе в целом, сводится к 4 основным ти­пам: сильному, электромагнитному, слабому и гравитационному. Сильное взаимодействие удерживает нуклоны в атомных ядрах и присуще адронам (протонам, нейтронам, мезонам, гиперонам и др.). К электромагнитному сводятся взаимодействия, проявляющиеся на макро­уровне- упругие, вязкие, молекулярные, химические и др. Слабые взаимодействия вызыва­ют β -распад ядер и наряду с электромагнитными силами управляют поведением пептонов -элементарных частиц с полуцелым спином, не участвующих в сильных взаимодействиях. Гравитационное взаимодействие присуще всем материальным объектам.

Сравнивают фундаментальные взаимодействия между собой но их интенсивности. Однозначного определения этого понятия и метода сравнения интенсивностей нет. Поэтому используются сравнения по совокупности явлений.

Например, отношение силы гравитационного притяжения между двумя протонами к силе кулоновского отталкивания составляет G (m p m p /r 2) /(e 2 /4πε 0 r 2) = 4πε 0 G(m p 2 /e 2) =10 -36 . Это число и берется в качестве меры отношения гравитационного и электромагнитного взаимодействий.

Соотношение между сильным и электромагнитным взаимодействиями, определяемое по сечениям и энергиям ядерных реакций, оценивается как 10 4: 1. Подобным же образом сравниваются интенсивности сильного и слабого взаимодействий.

Наряду с интенсивностью в качестве меры сравнения взаимодействий используют также время и расстояние взаимодействия. Обычно для сравнения времен берут скорости процессов при кинетических энергиях сталкивающихся частиц Е= 1 ГэВ. При таких энерги­ях процессы, вызываемые сильными взаимодействиями, совершаются за время ядерного пролёта 10 -23 с, процессы, вызываемые электромагнитными взаимодействиями, - за время порядка 10 -19 с, слабыми - за время порядка 10 -9 с, гравитационными - 10 +16 с.

B качестве расстояний для сравнения взаимодействий берут обычно длину свободно­го пробега частицы в веществе. Сильно взаимодействующие частицы с Е= 1 ГэВ задержи­ваются слоем тяжёлого металла толщиной до 1 м. Тогда как нейтрино, способное участво­вать только в слабом взаимодействии, при энергии в 100 раз меньше (Е= 10 МэВ) может за­держаться слоем 10 9 км!

а. Сильное взаимодействие не только самое интенсивное, но и самое короткодействующее в природе. На расстояниях, превышающих 10 -15 м, его роль становится ничтожной. Обеспечивая стабильность ядер, это взаимодействие не влияет практически на атомные явления. Сильное взаимодействие не универсально. Оно присуще не всем частицам, а только адронам - нуклонам, мезонам, гиперонам и др. Существуют частицы - фотоны, электроны, мюоны, нейтрино, не подверженные сильному взаимодействию и не рождающиеся за его счёт при столкновениях.

б. Электромагнитное взаимодействие по интенсивности на 4 порядка уступает сильному. Главной областью его проявления являются расстояния, начиная от поперечника ядра 10 -15 м и вплоть примерно до 1 м. Сюда входят структура атомов, молекул, кристаллов, химические реакции, деформации, трение, свет, радиоволны и многие другие физические явления, доступные восприятию человека.

Наиболее сильно электромагнитное взаимодействие у электрически заряженных час­тиц. У нейтральных частиц с ненулевым спином оно проявляется слабее и лишь благодаря тому, что такие частицы имеют магнитный момент порядка М=eћ/2m. Ещё слабее электромагнитное взаимодействие проявляется у нейтральных пионов π 0 и у нейтрино.

Исключительно важным свойством ЭМ-взаимодействия является наличие как отталкивания между одноимённо заряженными, так и притяжения между разноименно заряжен­ными частицами. Благодаря этому ЭМ-взаимодействие между атомами и любыми другими объектами с нулевым суммарным зарядом имеет относительно короткий радиус действия, хотя кулоновские силы между заряженными частицами являются дальнодействующими.

е. Слабое взаимодействие ничтожно мало по сравнению с сильным и электромагнит­ным. Но с уменьшением расстояний оно стремительно нарастает. Если допустить, что дина­мика нарастания сохраняется достаточно глубоко, то при расстояниях порядка 10 -20 м слабое взаимодействие сравняется с сильным. Но экспериментальному исследованию такие рас­стояния пока недоступны.

Слабое взаимодействие обуславливает некоторые процессы взаимопревращений час­тиц. Например, частица сигма - плюс - гиперон только под влиянием слабого взаимодейст­вия распадается на протон и нейтральный пион, Σ + => р + π 0 . Благодаря слабому взаимодей­ствию идетβ - распад. Такие частицы как гипероны, каоны, мюоны при отсутствии слабого взаимодействия были бы стабильными.

г. Гравитационное взаимодействие самое слабое. Но оно характерно дальнодейст­вием, абсолютной универсальностью (гравитируют все тела) и одинаковым знаком между любой парой частиц. Последнее свойство приводит к тому, что гравитационные силы всегда растут с увеличением массы тел. Поэтому гравитация, несмотря на всё ничтожную относи­тельную интенсивность, во взаимодействиях космических тел - планет, звёзд, галактик -приобретает решающую роль

В мире элементарных частиц роль гравитации ничтожна. Поэтому в физике атома, яд­ра и элементарных частиц гравитационное взаимодействие не принимается во внимание.

3. Характеристики элементарных частиц . До начала 50-х годов XX в., пока коли­чество открытых частиц было относительно невелико, для описания частиц использовались общефизические величины - масса m, кинетическая энергия Е, импульс р и одно квантовое число - спин s, позволявший судить о величине механического и магнитного моментов час­тицы. Для нестабильных частиц добавлялось сюда ещё среднее время жизни τ.

Но постепенно в закономерностях рождений и распада определённых частиц удава­лось выделить некоторые признаки, специфические для этих частиц. Для обозначения этих свойств пришлось вводить новые квантовые числа. Некоторые из них были названы заряда­ми.

Например, выяснилось, что при распаде тяжёлых частиц, например, нейтрона, нико­гда не бывает так, чтобы образовались одни лёгкие, например, электроны е - , е + и нейтрино. И наоборот, при столкновении электронов и позитронов нельзя получить нейтрон, хотя зако­ны сохранения энергии и импульса выполняются. Для отражения этой закономерности было введено квантовое число барионныи заряд В. Стали полагать, что у таких тяжёлых частиц -бариоиов В = 1, у их античастиц В =-1. У лёгких частиц B = 0. В результате открытая зако­номерность приняла форму закона сохранения барионного заряда.

Аналогично для лёгких частиц эмпирически были введены квантовые числа - лептонные заряды L - признаки запретности некоторых превращений. Условились Считать, что лептонные заряды L е = +1 для электронов е - и электронных нейтрино ν e ,L µ = + 1 для отрица­тельных мюонов µ - и мюонных нейтрино ν µ ,L τ = +1 для отрицательных таонов τ - и таонных нейтрино v τ . Для соответствующих античастиц L= -1. Как и барионныи, лептонные заряды сохраняются во всех взаимодействиях.

При открытии гиперонов, рождающихся в сильных взаимодействиях, оказалось, что их время жизни не равно времени пролёта 10 -23 с, что характерно для сильно взаимодейст­вующих частиц, а в 10 13 раз больше. Это представлялось неожиданным и странным и могло быть объяснено лишь тем, что частицы, родившиеся в сильных взаимодействиях, распадают­ся в слабых взаимодействиях. Для отражения такого свойства частиц ввели квантовое число странность S. У странных частицS = + 1, у их античастиц S=- 1, у других частиц S = 0.

Электрический заряд Q микрочастиц выражается через его отношение к положитель­ному элементарному заряду е + . Поэтому электрический заряд Q частиц также целочислен­ное квантовое число. У протона Q = + 1, у электрона Q = -1, у нейтрона, нейтрино и других нейтральных частицQ = 0.

Кроме названных параметров элементарные частицы имеют и другие характеристи­ки, которые здесь не рассматриваются.

4. Законы сохранения в физике элементарных частиц можно разделить на три труппы: всеобщие законы сохранения, точные законы сохранения зарядов и приближённые законы сохранения.

а. Всеобщие законы сохранения выполняются точно независимо от масштаба явле­ний - в микро-, макро- и мегамире. Эти законы вытекают из геометрии пространства - вре­мени. Однородность времени приводит к закону сохранения энергии, однородность про­странства - к закону сохранения импульса, изотропность пространства - к закону сохранения момента импульса, равноправие ИСО - к закону сохранения центра инерции. Кроме этих 4-х законов сюда входят ещё два, связанные с симметрией пространства - времени относитель­но зеркальных отражений координатных осей. Из зеркальной симметрии координатных осей следует, что право-левые симметрии пространства тождественны (закон сохранения чёт­ности). Закон, связанный с зеркальной симметрией времени, говорит о тождественности явлений в микромире относительно изменения знака времени.

б. Точные законы сохранения зарядов . Любой физической системе приписывается целочисленный заряд каждого сорта. Каждый заряд аддитивен и сохраняется. Таких заря­дов 5: электрический Q, барионныи В, три леигонных - электронный L e , мюониый L µ тон­ный L τ . Все заряды целочисленны и могут иметь как положительные, так и отрицательные значения в нуль.

Электрический заряд имеет двойное значение. Он представляет собой не только квантовое число, но и является источником силового поля. Барионный и лептонные заряды не являются источниками силового поля. Для сложной системы полный заряд любого сорта ра­вен сумме соответствующих зарядов входящих в систему элементарных частиц.

в. Приближённые законы сохранения выполняются лишь в некоторых видах фундаментальных взаимодействий. Они относятся к таким характеристикам, как странность S и др.

Все перечисленные законы сохранения сведены в таблицу 26.2.

5. Частицы и античастицы имеют одинаковую массу, но все заряды у них противо­положны Выбор из пары частицы и античастицы произволен. Например, в паре электрон + позитрон договорились считать электрон е - частицей, а позитрон е + - античастицей. Заряды электрона Q =-1, В = 0, Le = +1, Lµ= 0,Lτ =0. Заряды позитрона Q = +1, В = 0, Le=-1, Lµ= 0,Lτ =0

Все заряды системы частица + античастица равны нулю. Такие системы, у которых все заряды равны нулю, называются истинно нейтральными. Есть истинно нейтральные и частицы. Их две: γ - квант (фотон) и η - мезон. Частицы и античастицы здесь тождественны.

6. Классификация элементарных частиц не завершена до сих пор. В основу одной из классификаций в настоящее время положены среднее время жизни τ, масса m, спин s, пять видов зарядов, странность S и другие параметры частиц. Все частицы делятся на 4 класса.

1- й класс образует одна частица - фотон. У фотона равны нулю масса покоя и все за­ряды. Фотон-не подвержен сильным взаимодействиям. Его спин равен 1, то есть по статисти­ке он бозон.

2- й класс образуют лептоны. Это легкие частицы с нулевым барионным зарядом. У каждой частицы - лептопа один из лентонных зарядов не равен нулю. Лептоны не подверже­ны сильным взаимодействиям. Спин всех лептонов 1/2, то есть по статистике они фермионы.

3- й класс образуют мезоны. Это частицы с нулевыми барионным и лептонными заря­дами, участвующие в сильных взаимодействиях. Все мезоны имеют целый спин, то есть по статистике они бозоны.

4- й класс составляют барионы. Это тяжёлые частицы с отличным от нуля барионным зарядом В ≠ О и с нулевыми лептонными, Le,Lµ,Lτ = 0. Они имеют полуцелый спин (фермио­ны) и участвуют в сильных взаимодействиях. По способности частиц 3-го и 4-го классов участвовать в сильных взаимодействиях их называют еще адронами.

В таблице 26. 3 приведены хорошо известные частицы - не резонансы с их основными характеристиками. Приведены частицы и античастицы. Истинно нейтральные частицы, не имеющие античастиц, помещены посредине столбца. Названия приведены только для час­тиц. Соответствующая античастица получается просто прибавлением к названию Частицы приставки «анти». Например, протон - антипротон, нейтрон - антинейтрон.

Антиэлектрон е + имеет исторически сложившееся название позитрон. По отношению к заряженным пионам и каонам термин «античастица» практически не применяется. Они от­личаются лишь Электрическим зарядом.Поэтому просто говорят о положительных или от­рицательных пионах и каонах.

Верхний знак заряда относится к частице, нижний к античастице. Например, для пары электрон - позитрон Le= ± 1. Это значит, что у электрона Le= + 1, а у позитрона Le= -1.

В таблице приняты обозначения: Q - электрический заряд, В барионный заряд Le,Lµ,Lτ, - соответственно, электронный, мюонный, таонный лептопные заряды, S - странность, s- спин, τ - среднее время жизни.

Масса покоя т указана в мегаэлектронвольтах. Из релятивистского уравнения mc 2 =еU следует m=eU/c 2 . Энергии частицы 1 МэВ соответствует масса m=eU/c 2 =1,6 *10 -19 /9*10 16 =17,71*10 -31 кг. Это около двух электронных масс. Разделив на массу электрона m e = 9, 11*10 -31 кг, получаем m = 1,94 m е.

Масса электрона, выраженная через энергию, составляет m е =0,511 МэВ.

7. Кварковая модель адронов . Адронами называются элементарные частицы, участ­вующие в сильных взаимодействиях. Это мезоны и барионы. В 1964 г. американцы Мюррей Гелл-Ман и Джордж Цвейг выдвинули гипотезу, что структура и свойства адронов могут быть поняты глубже, если предположить, что адроны состоят из более фундаментальных частиц, названных Гелл-Маном кварками. Кварковая гипотеза оказалась очень плодотвор­ной и является сейчас общепринятой.

Число предполагаемых кварков постоянно увеличивается. К настоящему времени наиболее хорошо изучены 5 разновидностей (ароматов) кварков: кварк u с массой m u = 5 МэВ, кварк d с массой m d = 7 МэВ, кварк s с ms= 150 МэВ, кварк c с mc = 1300 МэВ и кварк b с mb=5000 МэВ. У каждого кварка имеется свой антикварк.

Все перечисленные кварки имеют одинаковый спин 1/2 и одинаковый барионный заряд В = 1/3. Кварки u, c имеют дробный положительный заряд Q = + 2/3, кварки d, s,b имеют

дробный отрицательный заряд Q = - 1/3. Кварк s является носителем странности, кварк с -носителем очарования, кварк b - красоты (таблица 26.4).

Каждый адрон может быть представлен как ком­бинация нескольких квар­ков. Квантовые числа Q, В, S адронов получаются как сумма соответствующих чи­сел составляющих адрон кварков. Если в адрон входят два одинаковых кварка то их спины противоположны.

Барионы имеют полуцелый спин, поэтому могут состоять из нечетного числа кварков. Например, протон состоит из трех кварков, р => uud. Электрический заряд протона Q =+ 2/3+2/3 – 1/3 = 1, барионный заряд протона B = 1/3+ 1/3 + 1/3 = 1, странность S = О, спин s = 1/2 – 1/2 +1/2=1/2.

Нейтрон состоит также из трёх кварков, n => udd. Q =2/3-1/3- 1/3 =О, B = 1/3+1/3+1/3=1, S = 0, s = 1/2 – 1/2 + 1/2 = 1/2. Комбинацией из трёх кварков удаётся представить следующие барионы: Λ 0 (uds), Σ + (uus), Σ 0 (uds), Σ - (dds),Ξ 0 (uss), Ξ - (dss),Ω - (sss)a°(uss). В последнем случае спины всех кварков направлены в одну сторону. Поэтому Ω - - гиперон имеет спин 3/2.

Античастицы барионов образуются из соответствующих антикварков.

Мезоны состоят из двух любых кварка и антикварка. Например, положительный пион π + (ud). Его заряд Q = +2/3- (-1/3) = 1, В = 1/3-1/3= О, S = 0, спин 1/2 – 1/2= 0.

Кварковая модель предполагает, что внутри адронов кварки существуют, а опыт пока­зывает, что вылететь из адронов они не могуг. Но крайней мере, при тех энергиях, которые достижимы на современных ускорителях. Велика вероятность, что кварки вообще не могут существовать в свободном состоянии.

Современная физика высоких энергий полагает, что взаимодействие между кварками осуществляется посредством особых частиц - глюонов. Масса покоя глюонов равна нулю, спин равен единице. Допускается существование около десятка разных видов глюонов.