Парадокс Монти Холла — объяснение увеличения вероятности выбора. Парадокс Монти Холла: формулировка и объяснение Что если увеличить количество ячеек

Экология познания. Одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal».

Многие из нас наверняка слышали о теории вероятностей – особом разделе математики, который изучает закономерности в случайных явлениях, случайные события, а также их свойства. И как раз одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal». С этим парадоксом мы и хотим вас сегодня познакомить.

Определение парадокса Монти Холла

Как задача парадокс Монти Холла определяется в виде описаний вышеназванной игры, наиболее распространённым среди которых является формулировка, которая была опубликована журналом «Parade Magazine» в 1990 году.

Согласно ей, человек должен представить себя участником игры, где нужно выбрать одну дверь из трёх.

За одной дверью скрывается автомобиль, а за остальными – козы. Игрок должен выбрать одну дверь, к примеру, дверь №1.

А ведущий, знающий о том, что находится за каждой дверью, открывает одну из двух дверей, которые остались, например, дверь №3, за которой стоит коза.

После этого ведущий интересуется у игрока, не желает ли он изменить свой изначальный выбор и выбрать дверь №2?

Вопрос: повысятся ли шансы игрока на выигрыш, если он изменит свой выбор?

Но после публикации этого определения выяснилось, что задача игрока сформулирована несколько неверно, т.к. не обговорены все условия.

К примеру, ведущий игры может выбрать стратегию «адского Монти», предлагая изменить выбор только в том случае, если игрок изначально угадал дверь, за которой находится автомобиль.

И становится ясно, что изменение выбора приведёт к стопроцентному проигрышу.

Поэтому, наибольшую популярность получила постановка задачи с особым условием №6 из специальной таблицы:

  • Автомобиль может с одинаковой вероятностью находиться за каждой дверью
  • Ведущий всегда обязан открывать дверь с козой, кроме той которую выбрал игрок, и предлагать игроку возможность изменения выбора
  • Ведущий, имея возможность открыть одну из двух дверей, выбирает любую с одинаковой вероятностью

Представленный ниже разбор парадокса Монти Холла рассматривается именно с учётом этого условия. Итак, разбор парадокса.

Разбор парадокса Монти Холла

Есть три варианта развития событий:

Дверь 1

Дверь 2

Дверь 3

Результат, если менять выбор

Результат, если не менять выбор

Авто

Коза

Коза

Коза

Авто

Коза

Авто

Коза

Авто

Коза

Коза

Коза

Авто

Авто

Коза

Во время решения представленной задачи обычно приводятся такие рассуждения: ведущий в каждом случае убирает одну дверь с козой, следовательно, вероятность нахождения автомобиля за одной из двух закрытых дверей приравнивается к ½, независимо от того, какой выбор был сделан изначально. Однако это не так.

Смысл в том, что, делая первый выбор, участник разделяет двери на A (выбранную), B и C (оставшиеся). Шансы (P) на то, что машина стоит за дверью A, равны 1/3, а на то, что она за дверьми B и C равны 2/3. И шансы на успех при выборе дверей B и C вычисляются так:

P(B) = 2/3 * ½ = 1/3

P(C) = 2/3 * ½ = 1/3

Где ½ является условной вероятностью того, что машина находится именно за этой дверью, при условии, что машина не за той дверью, что выбрал игрок.

Ведущий, открывая заведомо проигрышную дверь из двух оставшихся, сообщает игроку 1 бит информации и изменяет тем самым условные вероятности для дверей B и C на значения 1 и 0. Теперь шансы на успех будут вычисляться так:

P(B) = 2/3*1 = 2/3

P(C) = 2/3*0 = 0

И получается, что если игрок изменит свой изначальный выбор, то его шанс на успех будет равен 2/3.

Объясняется это следующим образом: изменяя свой выбор после манипуляций ведущего, игрок выиграет, если изначально он выбрал дверь с козой, т.к. ведущий открывает вторую дверь с козой, а игроку остаётся лишь поменять двери. Выбрать же изначально дверь с козой можно двумя способами (2/3), соответственно, если игрок заменит двери, то выиграет с вероятностью 2/3. Именно из-за противоречия такого вывода интуитивному восприятию задача и получила статус парадокса.

Интуитивное восприятие говорит о следующем: когда ведущий открывает проигрышную дверь, перед игроком встаёт новая задача, на первый взгляд не связанная с изначальным выбором, т.к. коза за открываемой ведущим дверью будет там в любом случае, независимо от того, проигрышную или выигрышную дверь изначально выбрал игрок.

После открытия ведущим двери игрок должен снова сделать выбор – либо остановиться на прежней двери, либо выбрать новую. Это значит, что игрок делает именно новый выбор, а не меняет изначальный. И математическим решением рассматриваются две последовательные и связанные друг с другом задачи ведущего.

Но нужно иметь в виду, что ведущий открывает дверь именно из тех двух, которые остались, но не ту, что выбрал игрок. А значит, шанс на то, что машина находится за оставшейся дверью, увеличиваются, т.к. ведущий её не выбрал. Если же ведущий знает, что за выбранной игроком дверью стоит коза, всё-таки её откроет, он тем самым заведомо снизит вероятность того, что игрок выберет правильную дверь, ведь вероятность успеха станет равна ½. Но это уже игра по иным правилам.

А вот ещё одно объяснение: допустим, игрок играет по представленной выше системе, т.е. из дверей B или C всегда выбирает ту, что отличается от изначального выбора. Проиграет он в том случае, если изначально выбрал дверь с автомобилем, т.к. впоследствии выберет дверь с козой. В любом другом случае игрок выиграет, если изначально выбрал проигрышный вариант. Однако вероятность того, что изначально он выберет его, равна 2/3, из чего следует, что для успеха в игре сначала нужно сделать ошибку, вероятность которой в два раза больше вероятности правильного выбора.

Третье объяснение: представим, что дверей не 3, а 1000. После того как игрок сделал выбор, ведущий убирает 998 ненужных дверей – остаются только две двери: выбранная игроком и ещё одна. Но шанс на то, что машина за каждой из дверей совсем не ½. Скорее всего (0,999%) машина будет за той дверью, которую игрок не выбрал изначально, т.е. за дверью, отобранной из оставшихся после первого выбора 999 других. Примерно так же нужно и рассуждать при выборе из трёх дверей, пусть шансы на успех и снижаются и становятся 2/3.

И последнее объяснение – замена условий. Допустим, что вместо того, чтобы делать изначальный выбор, например, двери №1, и вместо открытия двери №2 или №3 ведущим, игрок должен сделать верный выбор с первого раза, если ему известно, что вероятность успеха с дверью №1 равна 33%, но об отсутствии машины за дверьми №2 и №3 он не знает ничего. Из этого следует, что шанс на успех с последней дверью будет составлять 66%, т.е. вероятность победы увеличивается вдвое.

Но каково будет положение дел, если ведущий станет вести себя иначе?

Разбор парадокса Монти Холла при другом поведении ведущего

В классической версии парадокса Монти Холла говорится, что ведущий шоу должен обязательно предоставить игроку выбор двери, вне зависимости от того, угадал игрок или нет. Но ведущий может и усложнить своё поведение. Например:

  • Ведущий предлагает игроку изменить свой выбор, если он изначально верный – игрок всегда проиграет, если согласится изменить выбор;
  • Ведущий предлагает игроку изменить свой выбор, если он изначально не верный – игрок всегда победит, если согласится;
  • Ведущий открывает дверь наугад, не зная, что где стоит – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий открывает дверь с козой, если игрок, действительно, выбрал дверь с козой – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий всегда открывает дверь с козой. Если игрок выбрал дверь с машиной, левая дверь с козой будет открываться с вероятностью (q) равной p, а правая - с вероятностью q = 1-p. Если ведущий открыл дверь слева, то вероятность выигрыша рассчитывается как 1/(1+p). Если ведущий открыл дверь справа, то: 1/(1+q).Но вероятность того, что будет открыта дверь справа, равна: (1+q)/3;
  • Условия из примера выше, но p=q=1/2 - шансы игрока на выигрыш при смене двери всегда будут составлять 2/3;
  • Условия из примера выше, но p=1, а q=0. Если ведущий откроет дверь справа, то изменение игроком выбора приведёт к победе, если будет открыта дверь слева, то вероятность победы станет равна ½;
  • Если ведущий всегда будет открывать дверь с козой, когда игроком выбрана дверь с автомобилем, и с вероятностью ½, если игроком выбрана дверь с козой, то шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Если игра повторяется множество раз, а машина находится за той или иной дверью всегда с одинаковой вероятностью, плюс с одинаковой вероятностью ведущим открывается дверь, но ведущий знает, где машина и всегда ставит игрока перед выбором, открывая дверь с козой, то вероятность победы будет равна 1/3;
  • Условия из примера выше, но ведущий вообще может не открывать дверь - шансы игрока на выигрыш будут составлять 1/3.

Таков парадокс Мотни Холла. Проверить его классический вариант на практике довольно просто, но гораздо сложнее будет провести эксперименты с изменением поведения ведущего. Хотя для дотошных практиков и это возможно. Но не важно, станете вы проверять парадокс Монти Холла на личном опыте или нет, теперь вы знаете некоторые секреты игр, проводящихся с людьми на разных шоу и телепередачах, а также интересные математические закономерности.

Кстати, это интересно: парадокс Монти Холла упоминается в фильме Роберта Лукетича «Двадцать одно», романе Сергея Лукьяненко «Недотёпа», телесериале «4исла», повести Марка Хэддона «Загадочное ночное убийство собаки», комиксе «XKCD», а также был «героем» одной из серий телешоу «Разрушители легенд». опубликовано

Присоединяйтесь к нам в

О лотереях

Игра эта давно приобрела массовый характер и стала неотъемлемой частью современной жизни. И хотя лотерея всё больше расширяет свои возможности, многие люди по-прежнему видят в ней лишь способ обогащения. Пусть и не бесплатный и не надёжный. С другой стороны, как заметил один из героев Джека Лондона, в азартной игре нельзя не считаться с фактами - людям иногда везёт.

Математика случая. История теории вероятностей

Александр Буфетов

Стенограмма и видеозапись лекции доктора физико-математических наук, ведущего научного сотрудника Математического института имени Стеклова, ведущего научного сотрудника ИППИ РАН, профессора факультета математики Высшей школы экономики, директора исследований Национального центра научных исследований во Франции (CNRS) Александра Буфетова, прочитанной в рамках цикла «Публичные лекции "Полит.ру"» 6 февраля 2014 г.

Иллюзия закономерности: почему случайность кажется неестественной

Наши представления о случайном, закономерном и невозможном часто расходятся с данными статистики и теории вероятностей. В книге «Несовершенная случайность. Как случай управляет нашей жизнью» американский физик и популяризатор науки Леонард Млодинов рассказывает о том, почему случайные алгоритмы выглядят так странно, в чем подвох «рандомной» тасовки песен на IPod и от чего зависит удача биржевого аналитика. «Теории и практики» публикуют отрывок из книги.

Детерминизм

Детерминизм — общенаучное понятие и философское учение о причинности, закономерности, генетической связи, взаимодействии и обусловленности всех явлений и процессов, происходящих в мире.

Бог - это статистика

Дебора Нолан, профессор статистики в Университете Калифорнии в Беркли, предлагает своим студентам выполнить очень странное на первый взгляд задание. Первая группа должна сто раз подбрасывать монетку и записывать результат: орёл или решка. Вторая должна представить, что подбрасывает монетку – и тоже составить список из сотни «мнимых» результатов.

Что такое детерминизм

Если известны начальные условия системы, можно, используя законы природы, предсказать ее конечное состояние.

Задача о разборчивой невесте

Гусейн-Заде С. М.

Парадокс Зенона

Можно ли из одной точки в пространстве добраться до другой? Древнегреческий философ Зенон Элейский считал, что перемещение невозможно осуществить вообще, но как он это аргументировал? Колм Келлер расскажет о том, как разрешить знаменитый парадокс Зенона.

Парадоксы бесконечных множеств

Представьте отель с бесконечным числом номеров. Приезжает автобус с бесконечным числом будущих постояльцев. Но разместить их всех - не так-то просто. Это бесконечная морока, а гости бесконечно уставшие. И если справиться с задачей не удастся, то можно потерять бесконечно много денег! Что же делать?

Зависимость роста ребенка от роста родителей

Молодым родителям, конечно, хочется знать, какого роста будет их ребенок, став взрослым. Математическая статистика может предложить простую линейную зависимость для приближен ной оценки роста детей, исходя только из роста отца и матери, а также указать точность такой оценки.

Парадокс Монти Холла - наверно самый известный парадокс в теории вероятностей. Существует масса его вариаций, например, парадокс трёх узников. И существует масса толкований и объяснений этого парадокса. Но здесь, я хотел бы дать не только формальное объяснение, но показать «физическую» основу того, что происходит в парадоксе Монти Холла и ему подобных.

Классическая формулировка такова:

«Вы участник игры. Перед вами три двери. За одной из них приз. Ведущий предлагает вам попытаться угадать, где приз. Вы указываете на одну из дверей (наугад).

Формулировка парадокса Монти Холла

Ведущий знает, где на самом деле находится приз. Он, пока, не открывает ту дверь, на которую вы показали. Но открывает вам ещё одну из оставшихся дверей, за которой нет приза. Вопрос в том, сто́ит ли вам изменить свой выбор, или остаться при прежнем решении?»

Оказывается, что если вы просто измените выбор, то ваши шансы выиграть возрастут!

Парадоксальность ситуации очевидна. Кажется, что всё происходящее случайно. Нет никакой разницы, поменяете вы своё решение или нет. Но это не так.

«Физическое» объяснение природы этого парадокса

Давайте, сперва, не будем вдаваться в математические тонкости, а просто не предвзято посмотрим на ситуацию.

В этой игре вы лишь сперва делаете случайный выбор. Потом ведущий сообщает вам дополнительную информацию , которая и позволяет вам увеличить свои шансы на победу.

Каким образом ведущий сообщает вам дополнительную информацию? Очень просто. Обратите внимание, что он открывает не любую дверь.

Давайте, для простоты (хоть в этом и есть элемент лукавства), рассмотрим более вероятную ситуацию: вы показали на дверь, за которой нет приза. Тогда, за одной из оставшихся дверей приз есть . То есть, у ведущего нет выбора. Он открывает вполне определённую дверь. (На одну указали вы, за другой есть приз, остаётся только одна дверь, которую может открыть ведущий.)

Именно в этот момент осмысленного выбора, он и сообщает вам информацию, которой вы можете воспользоваться.

В данном случае, использование информации заключается в том, что вы меняете решение.

Кстати, ваш второй выбор уже тоже не случаен (вернее, не на столько случаен, как первый выбор). Ведь вы выбираете из закрытых дверей, а одна уже открыта и она не произвольная .

Собственно, уже после этих рассуждений у вас может появиться ощущение, что лучше поменять решение. Это действительно так. Давайте покажем это более формально.

Более формальное объяснение парадокса Монти Холла

На самом деле ваш первый, случайный, выбор разбивает все двери на две группы. За той дверью, которую выбрали вы приз находится с вероятностью 1/3, за двумя другими - с вероятностью 2/3. Теперь ведущий вносит изменения: он открывает одну дверь во второй группе. И теперь вся вероятность 2/3 относится только к закрытой двери из группы из двух дверей.

Понятно, что теперь вам выгодней поменять своё решение.

Хотя, конечно, у вас остаётся шанс проиграть.

Тем не менее смена выбора увеличивает ваши шансы на выигрыш.

Парадокс Монти Холла

Парадокс Монти Холла - вероятностная задача, решение которой (по мнению некоторых) противоречит здравому смыслу. Формулировка задачи:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы.
Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза.

Парадокс Монти Холла. Самая неточная математика

После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2.
Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

При решении задачи часто ошибочно полагают что два выбора являются независимыми и, следовательно, вероятность при изменении выбора не изменится. На самом деле это не так, в чём можно убедиться вспомнив формулу Байеса или посмотрев на результаты симуляции ниже:

Здесь: «стратегия 1» - не менять выбор, «стратегия 2» - изменить выбор. Теоретически, для случая с 3-мя дверями, распределение вероятностей - 33,(3)% и 66,(6)%. При численной симуляции должны бы получаться похожие результаты.

Ссылки

Парадокс Монти Холла – задача из раздела теории вероятности, в решении которой просматривается противоречие здравому смыслу.

История возникновения[править | править вики-текст]

В конце 1963 года в эфир вышло новое ток-шоу под названием «Let’s Make a Deal» («Давайте договоримся»). По сценарию викторины зрители из аудитории получали призы за правильные ответы, имея шанс приумножить их, делая новые ставки, но рискуя имеющимся выигрышем. Основателями шоу являлись Стефан Хатосу и Монти Холл, последний из которых стал его неизменным ведущим на многие годы.

Одним из заданий для участников стал розыгрыш Главного приза, который был расположен за одной из трех дверей. За двумя оставшимися находились поощрительные призы, в свою очередь ведущий знал порядок их расположения. Участнику необходимо было определить выигрышную дверь, поставив на кон весь свой выигрыш за шоу.

Когда угадывающий определялся с номером, ведущий открывал одну из оставшихся дверей, за которой находился поощрительный приз, и предлагал игроку поменять первоначально выбранную дверь.

Формулировки[править | править вики-текст]

Как конкретную задачу, парадокс впервые сформулировал Стив Селвин (Steve Selvin) в 1975 году, отправивший в журнал The American Statistician («Американский статистик»), и ведущему Монти Холлу, вопрос: изменятся ли шансы участника выиграть Главный приз, если после открытия двери с поощрительным он поменяет свой выбор? После этого случая появилось понятие «Парадокс Монти Холла».

В 1990 была в Parade Magazine (Журнал «Парад») опубликована самая распространенная версия парадокса с примером:

«Представьте себя на телеигре, где нужно отдать предпочтенье одной из трех дверей: за двумя из них козы, а за третьей — автомобиль. Когда Вы совершите выбор, предположив, например, что выигрышная дверь номер один, ведущий открывает одну из оставшихся двух дверей, например, номер три, за которой коза. Затем Вам дается шанс изменить выбор на другую дверь? Можно ли увеличить шансы выиграть автомобиль, если поменять свой выбор с двери номер один на дверь номер два?»

Эта формулировка является упрощенным вариантом, т.к. остается фактор влияния ведущего, который точно знает, где автомобиль и заинтересован в проигрыше участника.

Чтоб задача стала сугубо математической, необходимо исключить человеческий фактор, введя открытие двери с поощрительным призом и возможность изменить первоначальный выбор как неотъемлемые условия.

Решение[править | править вики-текст]

При сравнении шансов на первый взгляд изменение номера двери не даст никаких преимуществ, т.к. все три варианта имеют шанс на выигрыш 1/3 (ок. 33,33% на каждую из трех дверей). При этом открытие одной из дверей никак не отразится на шансах двух оставшихся, чьи шансы станут 1/2 к 1/2 (50% на каждую из двух оставшихся дверей). В основу такого суждения ложится суждение, что выбор двери игроком и выбор двери ведущим – два независимых события, не влияющих одно на другое. В действительности необходимо рассматривать всю последовательность событий как единое целое. В соответствии с теорией вероятности, у первой выбранной двери шансы с начала и до конца игры неизменно 1/3 (ок.33,33%), а у двух оставшихся в сумме 1/3+1/3 = 2/3 (ок. 66,66%). Когда открывается одна из двух оставшихся дверей, ее шансы становятся 0% (за ней спрятан поощрительный приз), и как результат шансы закрытой невыбранной двери составят 66,66%, т.е. в два раза больше, чем у выбранной первоначально.

Для облегчения понимания результатов выбора можно рассмотреть альтернативную ситуацию, в которой количество вариантов будет больше, например — тысяча. Вероятность выбрать выигрышный вариант составит 1/1000 (0,1%). При условии, что в последствии из оставшихся девятьсот девяносто девяти вариантов будут открыты девятьсот девяносто восемь неверных, становится очевидно, что вероятность одной оставшейся двери из девятьсот девяносто девяти невыбранных выше, чем у единственной, выбранной вначале.

Упоминания[править | править вики-текст]

Встретить упоминание Парадокса Монти Холла можно в «Двадцать одно» (фильма Роберта Лукетича), «Недотёпа» (романе Сергея Лукьяненко), телесериале «4исла» (телесериал), «Загадочное ночное убийство собаки» (повести Марка Хэддона), «XKCD» (комикс), «Разрушители легенд» (телешоу).

См. также[править | править вики-текст]

На изображении процесс выбора между двумя зарытыми дверьми из трех предложенных первоначально

Примеры решений задач по комбинаторике

Комбинаторика — это наука, с который каждый встречается в повседневной жизни: сколько способов выбрать 3 дежурных для уборки класса или сколько способов составить слово из данных букв.

В целом, комбинаторика позволяет вычислить, сколько различных комбинаций, согласно некоторым условиям, можно составить из заданных объектов (одинаковых или разных).

Как наука комбинаторика возникла еще в 16 веке, а теперь ее изучает каждый студент (и зачастую даже школьник). Начинают изучение с понятий перестановок, размещений, сочетаний (с повторениями или без), на эти темы вы найдете задачи и ниже. Наиболее известные правила комбинаторики — правила суммы и произведения, которые чаще всего применяются в типовых комбинаторных задачах.

Ниже вы найдете несколько примеров задач с решениями на комбинаторные понятия и правила, которые позволят разобраться с типовыми заданиями. Если есть трудности с задачами — заказывайте контрольную по комбинаторике.

Задачи по комбинаторике с решениями онлайн

Задача 1. У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?

Решение задачи по комбинаторике 1 (pdf, 35 Кб)

Задача 2. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой — 6 мужчинам, по третьей — 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?

Решение задачи по комбинаторике 2 (pdf, 39 Кб)

Задача 3. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?

Решение задачи по комбинаторике 3 (pdf, 33 Кб)

Задача 4. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?

Решение задачи по комбинаторике 4 (pdf, 34 Кб)

Задача 5. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую - 5 и в третью - 12. Сколькими способами это можно сделать.

Решение задачи по комбинаторике 5 (pdf, 37 Кб)

Задача 6. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?

Задача по комбинаторике с решением 6 (pdf, 33 Кб)

Задача 7. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?

Задача по комбинаторике с решением 7 (pdf, 37 Кб)

Задача 8. Сколько различных дробей можно составить из чисел 3, 5, 7, 11, 13, 17 так, чтобы в каждую дробь входили 2 различных числа? Сколько среди них будет правильных дробей?

Задача по комбинаторике с решением 8 (pdf, 32 Кб)

Задача 9. Сколько слов можно получить, переставляя буквы в слове Гора и Институт?

Задача по комбинаторике с решением 9 (pdf, 32 Кб)

Задача 10. Каких чисел от 1 до 1 000 000 больше: тех, в записи которых встречается единица, или тех, в которых она не встречается?

Задача по комбинаторике с решением 10 (pdf, 39 Кб)

Готовые примеры

Нужны решенные задачи по комбинаторике? Найди в решебнике:

Другие решения задач по теории вероятностей

Всем нам знакома ситуация, когда мы вместо трезвого расчета полагались на свою интуицию. Ведь нужно признать, что далеко не всегда можно все просчитать прежде чем сделать выбор. И как бы не лукавили люди, которые привыкли делать свой выбор только после тщательного анализа, им ни один раз это приходилось делать по принципу «наверное так». Одной из причин подобного действия может быть банальное отсутствие необходимого времени для оценки ситуации.

При этом выбор ждет сложившаяся ситуация прямо сейчас, и не позволяет уйти от ответа или действия. Но еще более каверзные ситуации для нас, которые в буквальном смысле вызывает судорогу мозга, - это разрушение уверенности в правильности выбора или в его вероятном превосходстве над иными вариантами, основанных на логических умозаключениях. На этом основаны все существующие парадоксы.

Парадокс в игре телешоу «Let’s Make a Deal»

Один из парадоксов, который вызывает жаркие споры среди любителей головоломок, называется парадоксом Монти Холла. Назван он в честь ведущего телешоу в США под названием «Let’s Make a Deal». На телешоу ведущий предлагает открыть одну из трех дверей, где в качестве приза находится автомобиль, в то время когда за другими двумя находятся по одной козе.

Участник игры делает свой выбор, но ведущий, зная где находится авто, открывает при этом не ту дверь, которую указал игрок, а другую, в которой находится коза и предлагает сменить первоначальный выбор игрока. Для дальнейшего разбора мы принимаем именно этот вариант поведения ведущего, хотя на самом деле он может периодически меняться. Другие варианты сценария развития мы просто перечислим ниже в статье.

В чем суть парадокса?

Еще раз по пунктам обозначим условия и изменим объекты игры для разнообразия на свои.

Участник игры находитесь в помещении с тремя банковскими ячейками. В одной из трех ячеек золотой слиток золота, в других двух по одной монете номиналом в 1 копейку СССР.

Итак, участник перед выбором и условия игры следующие:

  1. Участник может выбрать лишь одну из трех ячеек.
  2. Банкир знает изначально расположение слитка.
  3. Банкир всегда открывает ячейку с монетой, отличную от выбора игрока, и предлагает поменять выбор игроку.
  4. Игрок может в свою очередь поменять свой выбор или оставить первоначальный.

Что говорит интуиция?

Парадокс состоит в том, что для большинства людей, которые привыкли мыслить логически, шансы на выигрыш в случае смены своего первоначального выбора 50 на 50. Ведь, после того, как банкир открывает другую ячейку с монеткой, отличную от первоначального выбора игрока, остаются 2 ячейки, в одной из которых слиток золота, а в другой монетка. Игрок выигрывает слиток, если принимает предложение банкира сменить ячейку при условии, если в первоначально выбранной игроком ячейке не было слитка. И наоборот при данном условии - проигрывает, в случае если он откажется принять предложение.

Как подсказываем здравый смысл вероятность выбора слитка и выигрыша в таком случае 1/2. Но на самом деле ситуация иная! «Но как же так, здесь же все очевидно?» - спросите вы. Допустим вы выбрали ячейку № 1. Интуитивно да, неважно какой был у вас выбор первоначально, в конечном итоге у вас по факту перед выбором монета и слиток. И если изначально у вас была вероятность получения приза 1/3 , то в конечном итоге при открытии одной ячейки банкиром вы получаете вероятность 1/2. Казалось, вероятность увеличилась с 1/3 до 1/2. При внимательном разборе игры выясняется, что при смене решения вероятность увеличивается до 2/3 вместо интуитивных 1/2. Давайте рассмотрим за счет чего это происходит.

В отличие от интуитивного уровня, где наше сознание рассматривает событие после смены ячейки как нечто отдельное и забывает о первоначальном выборе, математика не разрывает эти два события, а наоборот сохраняет цепочку событий от начала до конца. Итак, как мы ранее и говорили, шансы на выигрыш при попадании сходу на слиток у нас 1/3, а вероятность, что мы выберем ячейку с монетой 2/3 (поскольку у нас есть один слиток и две монеты).

  1. Выбираем изначально банковскую ячейку со слитком - вероятность 1/3.
    • Если игрок изменяет свой выбор, принимая предложение банкира, - он проигрывает.
    • Если игрок не изменяет выбор, не принимая предложение банкира, - он выигрывает.
  2. Выбираем с первого раза банковскую ячейку с в монеткой - вероятность 2/3.
    • Если игрок поменяет свой выбор - выиграл.
    • Если игрок не изменяет выбор - проиграл.

Итак, для того, чтобы игрок ушел из банка со слитком золота в кармане, он должен выбрать изгначально проигрышную позицию с монеткой (вероятность 1/3), и после этого принять предложение банкира сменить ячейку.

Для того, чтобы понять данный парадокс и вырваться из оков шаблона первоначального выбора и оставшихся ячеек, давайте представим поведение игрока ровным счетом наоборот. Перед тем как банкир предложит ячейку для выбора, игрок мысленно точно определяется с тем, что он меняет свой выбор, и только после этого для него следует событие открытия лишней двери. Почему нет? Ведь открытая дверь не дает для него большей информации в такой логической последовательности. На первом этапе времени игрок разделяет ячейки на две разные области: первая - область с одной ячейкой с его первоначальным выбором, вторая с двумя оставшимися ячейками. Далее игроку предстоит сделать выбор между двумя областями. Вероятность достать из ячейки золотой слиток из первой области 1/3, из второй 2/3. Выбор следует за второй областью, в которой он может открыть две ячейки, первую откроет банкир, вторую он сам.

Существует еще более понятное объяснение парадокса Монти Холла. Для этого необходимо поменять формулировку задания. Банкир дает понять, что в одной из трех банковских ячеек находится золотой слиток. В первом случае он предлагает открыть одну из трех ячеек, а во втором - одновременно две. Что выберет игрок? Ну конечно сразу две, за счет повышения вероятности в два раза. И тот момент, когда банкир открыл ячейку с монеткой, это игроку на самом деле никак не помогает и не препятствует выбору, ведь банкир в любом случае покажет эту ячейку с монеткой, поэтому игрок может попросту игнорировать это действие. Со стороны игрока можно лишь только поблагодарить банкира за то, что он ему облегчил жизнь, и вместо двух ему пришлось открыть одну ячейку. Ну и окончательно можно избавится от синдрома парадокса если поставить себя на место банкира, который изначально знает, что игрок в двух из трех случаев указывает на неправильную дверь. Для банкира парадокс отсутствует как таковой, ведь он точно в такой инверсии событий уверен, что в случае смены событий игрок забирает золотой слиточек.

Парадокс Монти Холла явно не позволяет быть в выигрыше консерваторам, которые железобетонно стоят на своем первоначальном выборе и теряют свой шанс роста вероятности. Для консерваторов он так и останется 1/3. Для бдительных и рассудительных людей он вырастает до вышеуказанных 2/3.

Все приведенные утверждения актуальны лишь в соблюдении изначально оговоренных условий.

Что если увеличить количество ячеек?

Что если увеличить количество ячеек? Допустим вместо трех их будет 50. Золотой слиток будет лежать лишь только в одной ячейке, а в остальных 49 - монеты. Соответственно в отличии от классического случая вероятность попадания с ходу в цель 1/50 или 2% вместо 1/3, в то время как вероятность выбора ячейки с монетой составляет 98%. Далее ситуация развивается, как и в прежнем случае. Банкир предлагает открыть любую из 50 ячеек, участник выбирает. Допустим, игрок открывает ячейку под порядковым номеров 49. Банкир в свою очередь, как и в классическом варианте, не спешит выполнять желание игрока и открывает другие 48 ячеек с монетами и предлагает поменять свой выбор на оставшуюся под номером 50.

Здесь важно понимать, что банкир открывает именно 48 ячеек, а не 30, и оставляет при этом 2, включая выбранную игроком. Именно такой выбор позволяет парадоксу идти в разрез с интуицией. Как и в случае с классическим вариантом, открытие банкиром 48 ячеек оставляет только один единственный альтернативный вариант для выбора. Случай варианта меньшего открытия ячеек не позволяет поставить в один ряд задачу с классикой и ощутить парадокс.

Но раз уж мы и коснулись такого варианта, то давайте предположим, что банкир оставляет не одну, кроме выбранной игроком, а несколько ячеек. Представлено, как и прежде, 50 ячеек. Банкир после выбора игрока открывает только одну ячейку, оставляя при этом закрытыми 48 ячеек, включая выбранную игроком. Вероятность выбора слитка с первого раза 1/50. В сумме вероятность нахождения слитка в остальных ячейках 49/50, которая в свою очередь раскидывается не на 49, а на 48 ячеек. Не сложно посчитать, что вероятность нахождения слитка в таком варианте равна (49/50)/48=49/2900 . Вероятность пусть не на много, но все равно выше, чем 1/50 приблизительно на 1%.

Как мы и упоминали в самом начале ведущий Монти Холл в классическом сценарии игры с дверьми, козами и призовым авто может изменять условия игры и вместе с нем и вероятность выигрыша.

Математика парадокса

Могут ли математические формулы доказать увеличение вероятности при смене выбора?
Представим цепочку событий в виде множества, разделенного на две части, первую часть примем за X – это выбор на первом этапе ячейки сейфа игроком; и второе множество Y - оставшиеся две остальных ячейки. Вероятность (В) выигрыша для ячеек 2 и 3 можно выразить с помощью формул.

В(2) = 1/2 * 2/3 = 1/3
В(3) = 1/2 * 2/3= 1/3

Где 1/2 это вероятность, с которой банкир откроет ячейку 2 и 3 при условии, если игрок изначально выбрал ячейку без слитка.
Далее условная вероятность 1/2 при открытии банкиром ячейки с монетой изменяется на 1 и 0. Тогда формулы приобретают следующий вид:

В(2) = 0 * 2/3 = 0
B(3) = 1 * 2/3 = 1

Здесь мы наглядно видим, что вероятность выбора слитка в ячейке 3 - 2/3, а это чуть более 60 процентов.
Программист самого начального уровня может без труда проверить данный парадокс, написав программу, которая считает вероятность при смене выбора или наоборот и сверить результаты.

Объяснение парадокса в фильме 21 (Двадцать одно)

Наглядное разъяснение парадокса Монти Пола приводится в фильме «21» (Двадцать одно) , режиссера Роберта Лукетича. Профессор Микки Роса на лекции приводит пример из шоу Let’s Make a Deal и задает вопрос о распределении вероятности у студента Бена Кэмпбелла (актер и певец Джеймс Энтони), который дает правильный расклад и тем самым удивляет преподавателя.

Самостоятельное изучение парадокса

Для людей, которые хотят проверить результат самостоятельно на деле, но не имеющих математического базиса, мы предлагаем самостоятельно смоделировать игру, в которой вы будете ведущим, а кто-то будет игроком. Можете задействовать в этой игре детей, которые будут выбирать конфеты или фантики от них в заранее приготовленных картонных коробочках. При каждом выборе обязательно фиксируйте результат для дальнейшего подсчета.

Люди привыкли считать правильным то, что представляется очевидным. Оттого они часто попадают впросак, неверно оценив ситуацию, доверившись своей интуиции и не уделив время для того, чтобы критически осмыслить свой выбор и его последствия.

Монти наглядная иллюстрация неспособности человека взвесить свои шансы на успех в условиях выбора благоприятного исхода при наличии более чем одного неблагоприятного.

Формулировка парадокса Монти Холла

Итак, что же это за зверь такой? О чем, собственно, речь? Самым известным примером парадокса Монти Холла выступает телешоу, популярное в Америке середины прошлого века под названием «Давай заключим пари!». Кстати, именно благодаря ведущему этой викторины впоследствии и получил свое имя парадокс Монти Холла.

Игра состояла в следующем: участнику показывали три двери, с виду совершенно одинаковые. Однако за одной из них игрока ждал дорогой новый автомобиль, а вот за двумя другими в нетерпении томилось по козе. Как это обычно бывает в случае телевикторин, что находилось за выбранной конкурсантом дверью, то и становилось его выигрышем.

В чем же состоит хитрость?

Но не все так просто. После того как выбор был сделан, ведущий, зная, где сокрыт главный приз, открывал одну из оставшихся двух дверей (конечно, ту самую, за которой притаилось парнокопытное), а затем спрашивал игрока, не желает ли тот изменить свое решение.

Парадокс Монти Холла, сформулированный учеными в 1990 году, заключается в том, что, вопреки интуиции, подсказывающей, что нет никакой разницы в принятии на основании вопроса ведущего решения, нужно согласиться изменить свой выбор. Если хочется заполучить отличную машину, естественно.

Как это работает?

Причин, по которым людям не захочется отказываться от своего выбора, несколько. Интуиция и простая (но неверная) логика говорят, что от этого решения ничего не зависит. Более того, далеко не каждому захочется идти на поводу у другого - это же самая настоящая манипуляция, разве не так? Нет, не так. Но если бы все было сразу интуитивно понятно, то и не стали бы называть. Нет ничего странного в том, чтобы сомневаться. Когда данную головоломку впервые опубликовали в одном из крупных журналов, тысячи читателей, в том числе и признанные математики, прислали в редакцию письма, в которых утверждали, что напечатанный в номере ответ не соответствует действительности. Если существование теории вероятностей не было новостью для человека, попавшего на шоу, то возможно, он бы смог разгадать эту задачу. И тем самым увеличить шансы на победу. На самом деле объяснение парадокса Монти Холла сводится к несложной математике.

Объяснение первое, посложнее

Вероятность того, что приз находится за той дверью, которая была избрана изначально - один из трех. Шанс же обнаружить его за одной из двух оставшихся равен двум из трех. Логично, не так ли? Теперь, после того как одна из этих дверей оказывается открытой, и за ней обнаруживается коза, во втором множестве (том, которое соответствует 2/3 шанса на успех) остается только один вариант. Значение этого варианта остается прежним, и оно равно двум из трех. Таким образом, становится очевидно, что, изменив свое решение, игрок увеличит вероятность выигрыша вдвое.

Объяснение номер два, попроще

После такого трактования решения многие все равно настаивают на том, что смысла в этом выборе нет, ведь варианта всего два и один из них точно выигрышный, а другой однозначно ведет к поражению.

Но у теории вероятностей на данную проблему свой взгляд. И это становится еще яснее, если представить себе, что дверей изначально не три, а, скажем, сто. В таком случае возможность угадать, где находится приз, с первого раза составляет всего лишь один к девяносто девяти. Теперь участник делает свой выбор, а Монти исключает девяносто восемь дверей с козами, оставляя лишь две, одну из которых выбрал игрок. Таким образом, вариант, выбранный изначально, сохраняет шансы на выигрыш равные 1/100, а вторая предложенная возможность - 99/100. Выбор должен быть очевиден.

Существуют ли опровержения?

Ответ прост: нет. Ни одного достаточно обоснованного опровержения парадокса Монти Холла не существует. Все "разоблачения", которые можно обнаружить в Сети, сводятся к непониманию принципов математики и логики.

Для каждого, кто хорошо знаком с математическими принципами, неслучайность вероятностей абсолютно очевидна. Не соглашаться с ними может только тот, кто не понимает, как устроена логика. Если все вышесказанное до сих пор звучит неубедительно - обоснование парадокса было проверено и подтверждено на известной передаче «Разрушители легенд», а кому еще поверить, как не им?

Возможность убедиться наглядно

Хорошо, пусть все это звучит убедительно. Но ведь это только теория, можно ли как-то посмотреть на работу этого принципа в действии, а не только на словах? Во-первых, живых людей никто не отменял. Найдите напарника, который возьмет на себя роль ведущего и поможет разыграть вышеописанный алгоритм в реальности. Для удобства можно взять коробки, ящики или вовсе рисовать на бумаге. Повторив процесс несколько десятков раз, сравните число выигрышей в случае смены первоначального выбора с тем, сколько побед принесло упрямство, и все станет ясно. А можно поступить еще проще и воспользоваться Интернетом. В Сети существует немало симуляторов парадокса Монти Холла, в них можно проверить все самому и без лишнего реквизита.

Какой толк от этих знаний?

Может показаться, что это просто очередная головоломка, призванная напрячь мозги, и служит она лишь развлекательным целям. Однако свое практическое применение парадокс Монти Холла находит в первую очередь в азартных играх и различных тотализаторах. Тем, кто имеет большой опыт, прекрасно известны распространенные стратегии увеличения шансов на обнаружение валуйной ставки (от английского слова value, что буквально означает "ценность" - такой прогноз, который сбудется с большей вероятностью, чем это было оценено букмекерами). И одна из таких стратегий напрямую задействует парадокс Монти Холла.

Пример в работе с тотализатором

Спортивный пример будет мало отличаться от классического. Допустим, есть три команды из первого дивизиона. В три ближайших дня каждая из этих команд должна сыграть по одному решающему матчу. Та из них, что по итогам матча наберет больше очков, чем две другие, останется в первом дивизионе, остальные же будут вынуждены его покинуть. Предложение букмекера простое: нужно поставить на сохранение позиций одного из этих футбольных клубов, при этом коэффициенты ставок равны.

Для удобства принимаются такие условия, при которых соперники участвующих в выборе клубов примерно равны по силе. Таким образом, однозначно определить фаворита до начала игр не получится.

Тут нужно вспомнить историю про коз и автомобиль. Каждая из команд имеет шанс остаться на своем месте в одном случае из трех. Выбирается любая из них, на нее делается ставка. Пусть это будет "Балтика". По результатам первого дня один из клубов проигрывает, а двоим сыграть еще только предстоит. Это та самая "Балтика" и, скажем, "Шинник".

Большинство сохранит свою первоначальную ставку - в первом дивизионе останется "Балтика". Но следует помнить, что ее шансы остались прежними, а вот шансы "Шинника" удвоились. Поэтому логично сделать еще одну ставку, более крупную, на победу "Шинника".

Наступает следующий день, и матч с участием "Балтики" проходит вничью. Следующим играет "Шинник", и его игра заканчивается победой со счетом 3:0. Выходит, что именно он останется в первом дивизионе. Поэтому, хоть первая ставка на "Балтику" и теряется, но эту потерю перекрывает прибыль на новой ставке на "Шинник".

Можно предположить, и большинство так и поступит, что выигрыш "Шинника" - всего лишь случайность. На самом же деле принимать вероятность за случайность - крупнейшая ошибка для человека, участвующего в спортивных тотализаторах. Ведь профессионал всегда скажет, что любая вероятность выражается прежде всего в четких математических закономерностях. Если знать основы этого подхода и все связанные с ним нюансы, то риски потери денег сведутся к минимуму.

Польза в прогнозировании экономических процессов

Итак, в ставках на спорт парадокс Монти Холла знать просто необходимо. Но одними тотализаторами область его применения не ограничивается. Теория вероятностей всегда тесно связана со статистикой, оттого в политике и экономике понимание принципов парадокса не менее важно.

В условиях экономической неопределенности, с которой часто имеют дело аналитики, нужно помнить следующий проистекающий из решения задачи вывод: не обязательно точно знать единственно верное решение. Шансы на удачный прогноз всегда повышаются, если знать, чего точно не произойдет. Собственно, это и есть самый полезный вывод из парадокса Монти Холла.

Когда мир стоит на пороге экономических потрясений, политики всегда стараются угадать нужный вариант действий, чтобы максимально снизить последствия кризиса. Возвращаясь к предыдущим примерам, в сфере экономики задачу можно описать так: перед руководителями стран есть три двери. Одна ведет к гиперинфляции, вторая к дефляции, а третья - к заветному умеренному росту экономики. Но как нащупать верный ответ?

Политики утверждают, что те или иные их действия приведут к увеличению рабочих мест и росту экономики. Но ведущие экономисты, опытные люди, среди которых даже лауреаты Нобелевской премии, наглядно демонстрируют им, что один из этих вариантов точно не приведет к желаемому результату. Станут ли после этого политики менять свой выбор? Крайне маловероятно, так как в этом отношении они мало чем отличаются от тех же участников телешоу. Поэтому вероятность ошибки только увеличится при увеличении числа советчиков.

Исчерпывается ли этим информация по теме?

На самом деле до сих пор здесь рассматривался только "классический" вариант парадокса, то есть та ситуация, при которой ведущий точно знает, за какой из дверей находится приз, и открывает только дверь с козой. Но существуют и другие механизмы поведения ведущего, в зависимости от которых принцип работы алгоритма и результат его выполнения будут отличаться.

Влияние поведения ведущего на парадокс

Итак, что же может сделать ведущий, чтобы изменить ход событий? Допустим разные варианты.

Так называемый "Дьявольский Монти" - ситуация, в которой ведущий всегда предложит игроку поменять свой выбор при условии, что он был изначально верным. В этом случае изменение решения всегда приведет к поражению.

Напротив, "Ангельским Монти" называется похожий принцип поведения, но в том случае, если выбор игрока был изначально неверным. Логично, что в такой ситуации изменение решения приведет к победе.

Если же ведущий открывает двери наугад, не имея представления о том, что скрыто за каждой из них, то шансы выиграть всегда будут равны пятидесяти процентам. При этом за открытой ведущим дверью может оказаться и автомобиль.

Ведущий может 100 % открыть дверь с козой, если игрок выбрал автомобиль, и с 50 % вероятностью в случае, если игрок выбрал козу. При таком алгоритме действий, если игрок изменит выбор, то всегда будет в выигрыше в одном случае из двух.

Когда игра повторяется вновь и вновь, а вероятность того, что выигрышной окажется определенная дверь, всегда произвольна (так же как и то, какую дверь откроет ведущий, при этом ему известно, где скрывается автомобиль, и он всегда открывает дверь с козой и предлагает изменить выбор) - шанс победить всегда будет равен одному из трех. Это называется равновесием Нэша.

Равно как и в таком же случае, но при условии, что ведущий не обязан открывать одну из дверей вовсе — вероятность победы будет все так же равна 1/3.

В то время как классическая схема проверяется довольно легко, эксперименты с другими возможными алгоритмами поведения ведущего произвести на практике намного сложнее. Но при должной дотошности экспериментатора возможно и такое.

И все же, к чему все это?

Понимание механизмов действий любых логических парадоксов очень полезно для человека, его мозга и осознания того, как на самом деле может быть устроен мир, насколько его устройство может отличаться от привычного представления индивида о нем.

Чем больше человек знает о том, как работает то, что окружает его в повседневной жизни и о чем он вовсе не привык задумываться, тем лучше работает его сознание, и тем эффективнее он может быть в своих поступках и устремлениях.

Решение которой, на первый взгляд, противоречит здравому смыслу.

Энциклопедичный YouTube

  • 1 / 5

    Задача формулируется как описание игры , основанной на американской телеигре «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine , звучит следующим образом:

    Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль , за двумя другими дверями - козы . Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас - не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

    После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу (см. ниже).

    Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

    • автомобиль равновероятно размещён за любой из трёх дверей;
    • ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
    • если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.

    В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

    Разбор

    Для стратегии выигрыша важно следующее: если вы меняете выбор двери после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь. Это произойдёт с вероятностью 2 ⁄ 3 , так как изначально выбрать проигрышную дверь можно 2 способами из 3.

    Но часто при решении этой задачи рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны ½ , вне зависимости от первоначального выбора. Но это неверно: хотя возможностей выбора действительно остаётся две, эти возможности (с учётом предыстории) не являются равновероятными! Это так, поскольку изначально все двери имели равные шансы быть выигрышными, но затем имели разные вероятности быть исключёнными.

    Для большинства людей этот вывод противоречит интуитивному восприятию ситуации, и благодаря возникающему несоответствию между логическим выводом и ответом, к которому склоняет интуитивное мнение, задача и называется парадоксом Монти Холла .

    Еще более наглядной ситуация с дверями становится, если представить что дверей не 3 а, скажем 1000, и после выбора игрока ведущий убирает 998 лишних, оставляя 2 двери: ту, которую выбрал игрок и еще одну. Представляется более очевидным, что вероятности нахождения приза за этими дверьми различны, и не равны ½ . Гораздо большая вероятность его нахождения, а именно 0.999, будет иметь место при смене решения и выборе двери отобранной из 999. В случае с 3 дверьми логика сохраняется, но вероятность выигрыша при смене решения ниже, а именно 2 ⁄ 3 .

    Другой способ рассуждения - замена условия эквивалентным. Представим, что вместо осуществления игроком первоначального выбора (пусть это будет всегда дверь № 1) и последующего открытия ведущим двери с козой среди оставшихся (то есть всегда среди № 2 и № 3), представим, что игроку нужно угадать дверь с первой попытки, но ему предварительно сообщается, что за дверью № 1 автомобиль может быть с исходной вероятностью (33 %), а среди оставшихся дверей указывается за какой из дверей автомобиля точно нет (0 %). Соответственно, на последнюю дверь всегда будет приходиться 67 %, и стратегия её выбора предпочтительна.

    Другое поведение ведущего

    Классическая версия парадокса Монти Холла утверждает, что ведущий обязательно предложит игроку сменить дверь, независимо от того, выбрал тот машину или нет. Но возможно и более сложное поведение ведущего. В этой таблице кратко описаны несколько вариантов поведения.

    Возможное поведение ведущего
    Поведение ведущего Результат
    «Адский Монти»: ведущий предлагает сменить, если дверь правильная . Смена всегда даст козу.
    «Ангельский Монти»: ведущий предлагает сменить, если дверь неправильная . Смена всегда даст автомобиль.
    «Несведущий Монти» или «Монти Бух»: ведущий нечаянно падает, открывается дверь, и оказывается, что за ней не машина. Другими словами, ведущий сам не знает, что за дверями, открывает дверь полностью наугад, и только случайно за ней не оказалось автомобиля . Смена даёт выигрыш в ½ случаев.
    Именно так устроено американское шоу «Deal or No Deal» - правда, случайную дверь открывает сам игрок, и если за ней нет автомобиля, ведущий предлагает сменить.
    Ведущий выбирает одну из коз и открывает её, если игрок выбрал другую дверь. Смена даёт выигрыш в ½ случаев.
    Ведущий всегда открывает козу. Если выбран автомобиль, левая коза открывается с вероятностью p и правая с вероятностью q =1−p . Если ведущий открыл левую дверь, смена даёт выигрыш с вероятностью 1 1 + p {\displaystyle {\frac {1}{1+p}}} . Если правую - 1 1 + q {\displaystyle {\frac {1}{1+q}}} . Однако испытуемый никак не может повлиять на вероятность того, что будет открыта правая дверь - независимо от его выбора это произойдёт с вероятностью 1 + q 3 {\displaystyle {\frac {1+q}{3}}} .
    То же самое, p =q = ½ (классический случай). Смена даёт выигрыш с вероятностью 2 ⁄ 3 .
    То же самое, p =1, q =0 («бессильный Монти» - усталый ведущий стоит у левой двери и открывает ту козу, которая ближе). Если ведущий открыл правую дверь, смена даёт гарантированный выигрыш. Если левую - вероятность ½ .
    Ведущий открывает козу всегда, если выбран автомобиль, и с вероятностью ½ в противном случае. Смена даёт выигрыш с вероятностью ½ .
    Общий случай: игра повторяется многократно, вероятность спрятать автомобиль за той или иной дверью, а также открыть ту или иную дверь произвольная, однако ведущий знает, где автомобиль, и всегда предлагает смену, открывая одну из коз. Равновесие Нэша : ведущему выгоднее всего именно парадокс Монти Холла в классическом виде (вероятность выигрыша 2 ⁄ 3 ). Машина прячется за любой из дверей с вероятностью ⅓ ; если есть выбор, открываем любую козу наугад.
    То же самое, но ведущий может не открывать дверь вообще. Равновесие Нэша : ведущему выгодно не открывать дверь, вероятность выигрыша ⅓ .

    См. также

    Примечания

    1. Tierney, John (July 21, 1991), "Behind Monty Hall"s Doors: Puzzle, Debate and Answer? ", The New York Times , . Проверено 18 января 2008.