Орбита Луны. Собственное движение Луны. Видимая орбита Луны. Наш естественный спутник луна

Здесь, потратив немного времени на изучение интерфейса, мы добудем все необходимые нам данные. Выберем дату, например, да нам всё равно, но пусть это будет 27 июля 2018 года UT 20:21. Как раз в этот момент наблюдалась полная фаза лунного затмения. Программа выдаст нам огромную портянку

Полный вывод для эфемерид Луны на 27.07.2018 20:21 (начало координат в центре Земли)

******************************************************************************* Revised: Jul 31, 2013 Moon / (Earth) 301 GEOPHYSICAL DATA (updated 2018-Aug-13): Vol. Mean Radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349 Radius (gravity), km = 1738.0 Surface emissivity = 0.92 Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066 Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001 V(1,0) = +0.21 Surface accel., m/s^2 = 1.62 Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 k2 = 0.024059 Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Rot. Rate, rad/s = 0.0000026617 Geometric Albedo = 0.12 Mean angular diameter = 31"05.2" Orbit period = 27.321582 d Obliquity to orbit = 6.67 deg Eccentricity = 0.05490 Semi-major axis, a = 384400 km Inclination = 5.145 deg Mean motion, rad/s = 2.6616995x10^-6 Nodal period = 6798.38 d Apsidal period = 3231.50 d Mom. of inertia C/MR^2= 0.393142 beta (C-A/B), x10^-4 = 6.310213 gamma (B-A/C), x10^-4 = 2.277317 Perihelion Aphelion Mean Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7 Maximum Planetary IR (W/m^2) 1314 1226 1268 Minimum Planetary IR (W/m^2) 5.2 5.2 5.2 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 20:45:05 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Moon (301) {source: DE431mx} Center body name: Earth (399) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: 6378.1 x 6378.1 x 6356.8 km {Equator, meridian, pole} Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 1.537109094089627E-03 Y =-2.237488447258137E-03 Z = 5.112037386426180E-06 VX= 4.593816208618667E-04 VY= 3.187527302531735E-04 VZ=-5.183707711777675E-05 LT= 1.567825598846416E-05 RG= 2.714605874095336E-03 RR=-2.707898607099066E-06 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


Бр-р-р, что это? Без паники, для того, кто хорошо учил в школе астрономию, механику и математику тут боятся нечего. Итак, самое главное конечное искомые координаты и компоненты скорости Луны.

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 1.537109094089627E-03 Y =-2.237488447258137E-03 Z = 5.112037386426180E-06 VX= 4.593816208618667E-04 VY= 3.187527302531735E-04 VZ=-5.183707711777675E-05 LT= 1.567825598846416E-05 RG= 2.714605874095336E-03 RR=-2.707898607099066E-06 $$EOE
Да-да-да, они декартовы! Если внимательно прочесть всю портянку, то мы узнаем, что начало этой системы координат совпадает с центром Земли. Плоскость XY лежит в плоскости земной орбиты (плоскости эклиптики) на эпоху J2000. Ось X направлена вдоль линии пересечения плоскости экватора Земли и эклиптики в точку весеннего равноденствия. Ось Z смотрит в направлении северного полюса Земли перпендикулярно плоскости эклиптики. Ну а ось Y дополняет всё это счастье до правой тройки векторов. По-умолчанию единицы измерения координат: астрономические единицы (умнички из NASA приводят и величину автрономической единицы в километрах). Единицы измерения скорости: астрономические единицы в день, день принимается равным 86400 секундам. Полный фарш!

Аналогичную информацию мы можем получить и для Земли

Полный вывод эфемерид Земли на 27.07.2018 20:21 (начало координат в центре масс Солнечной системы)

******************************************************************************* Revised: Jul 31, 2013 Earth 399 GEOPHYSICAL PROPERTIES (revised Aug 13, 2018): Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006 Equ. radius, km = 6378.137 Mass layers: Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg Flattening = 1/298.257223563 oceans = 1.4 x 10^21 kg Density, g/cm^3 = 5.51 crust = 2.6 x 10^22 kg J2 (IERS 2010) = 0.00108262545 mantle = 4.043 x 10^24 kg g_p, m/s^2 (polar) = 9.8321863685 outer core = 1.835 x 10^24 kg g_e, m/s^2 (equatorial) = 9.7803267715 inner core = 9.675 x 10^22 kg g_o, m/s^2 = 9.82022 Fluid core rad = 3480 km GM, km^3/s^2 = 398600.435436 Inner core rad = 1215 km GM 1-sigma, km^3/s^2 = 0.0014 Escape velocity = 11.186 km/s Rot. Rate (rad/s) = 0.00007292115 Surface Area: Mean sidereal day, hr = 23.9344695944 land = 1.48 x 10^8 km Mean solar day 2000.0, s = 86400.002 sea = 3.62 x 10^8 km Mean solar day 1820.0, s = 86400.0 Moment of inertia = 0.3308 Love no., k2 = 0.299 Mean Temperature, K = 270 Atm. pressure = 1.0 bar Vis. mag. V(1,0) = -3.86 Volume, km^3 = 1.08321 x 10^12 Geometric Albedo = 0.367 Magnetic moment = 0.61 gauss Rp^3 Solar Constant (W/m^2) = 1367.6 (mean), 1414 (perihelion), 1322 (aphelion) ORBIT CHARACTERISTICS: Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d Mean daily motion, deg/d = 0.9856474 Hill"s sphere radius = 234.9 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 21:16:21 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Earth (399) {source: DE431mx} Center body name: Solar System Barycenter (0) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: (undefined) Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.755663665315949E-01 Y =-8.298818915224488E-01 Z =-5.366994499016168E-05 VX= 1.388633512282171E-02 VY= 9.678934168415631E-03 VZ= 3.429889230737491E-07 LT= 5.832932117417083E-03 RG= 1.009940888883960E+00 RR=-3.947237246302148E-05 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


Здесь в качестве начала координат выбран барицентр (центр масс) Солнечной системы. Интересующие нас данные

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.755663665315949E-01 Y =-8.298818915224488E-01 Z =-5.366994499016168E-05 VX= 1.388633512282171E-02 VY= 9.678934168415631E-03 VZ= 3.429889230737491E-07 LT= 5.832932117417083E-03 RG= 1.009940888883960E+00 RR=-3.947237246302148E-05 $$EOE
Для Луны нам понадобятся координаты и скорость относительно барицентра Солнечной системы, мы можем их посчитать, а можем попросит NASA дать нам такие данные

Полный вывод эфемерид Луны на 27.07.2018 20:21 (начало координат в центре масс Солнечной системы)

******************************************************************************* Revised: Jul 31, 2013 Moon / (Earth) 301 GEOPHYSICAL DATA (updated 2018-Aug-13): Vol. Mean Radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349 Radius (gravity), km = 1738.0 Surface emissivity = 0.92 Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066 Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001 V(1,0) = +0.21 Surface accel., m/s^2 = 1.62 Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 k2 = 0.024059 Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Rot. Rate, rad/s = 0.0000026617 Geometric Albedo = 0.12 Mean angular diameter = 31"05.2" Orbit period = 27.321582 d Obliquity to orbit = 6.67 deg Eccentricity = 0.05490 Semi-major axis, a = 384400 km Inclination = 5.145 deg Mean motion, rad/s = 2.6616995x10^-6 Nodal period = 6798.38 d Apsidal period = 3231.50 d Mom. of inertia C/MR^2= 0.393142 beta (C-A/B), x10^-4 = 6.310213 gamma (B-A/C), x10^-4 = 2.277317 Perihelion Aphelion Mean Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7 Maximum Planetary IR (W/m^2) 1314 1226 1268 Minimum Planetary IR (W/m^2) 5.2 5.2 5.2 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 21:19:24 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Moon (301) {source: DE431mx} Center body name: Solar System Barycenter (0) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: (undefined) Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.771034756256845E-01 Y =-8.321193799697072E-01 Z =-4.855790760378579E-05 VX= 1.434571674368357E-02 VY= 9.997686898668805E-03 VZ=-5.149408819470315E-05 LT= 5.848610189172283E-03 RG= 1.012655462859054E+00 RR=-3.979984423450087E-05 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.771034756256845E-01 Y =-8.321193799697072E-01 Z =-4.855790760378579E-05 VX= 1.434571674368357E-02 VY= 9.997686898668805E-03 VZ=-5.149408819470315E-05 LT= 5.848610189172283E-03 RG= 1.012655462859054E+00 RR=-3.979984423450087E-05 $$EOE
Чудесно! Теперь необходимо слегка обработать полученные данные напильником.

6. 38 попугаев и одно попугайское крылышко

Для начала определимся с масштабом, ведь наши уравнения движения (5) записаны в безразмерной форме. Данные, предоставленные NASA сами подсказывают нам, что за масштаб координат стоит взять одну астрономическую единицу. Соответственно в качестве эталонного тела, к которому мы будем нормировать массы других тел мы возьмем Солнце, а в качестве масштаба времени - период обращения Земли вокруг Солнца.

Все это конечно очень хорошо, но мы не задали начальные условия для Солнца. «Зачем?» - спросил бы меня какой-нибудь лингвист. А я бы ответил, что Солнце отнюдь не неподвижно, а тоже вращается по своей орбите вокруг центра масс Солнечной системы. В этом можно убедится, взглянув на данные NASA для Солнца

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 6.520050993518213E+04 Y = 1.049687363172734E+06 Z =-1.304404963058507E+04 VX=-1.265326939350981E-02 VY= 5.853475278436883E-03 VZ= 3.136673455633667E-04 LT= 3.508397935601254E+00 RG= 1.051791240756026E+06 RR= 5.053500842402456E-03 $$EOE
Взглянув на параметр RG мы увидим, что Солнце вращается вокруг барицентра Солнечной системы, и на 27.07.2018 центр звезды находится от него на расстоянии в миллион километров. Радиус Солнца, для справки - 696 тысяч километров. То есть барицентр Солнечной системы лежит в полумиллионе километров от поверхности светила. Почему? Да потому что все остальные тела, взаимодействующие с Солнцем так же сообщают ему ускорение, главным образом, конечно тяжеленький Юпитер. Соответственно у Солнца тоже есть своя орбита.

Мы конечно можем выбрать эти данные в качестве начальных условий, но нет - мы же решаем модельную задачу трех тел, и Юпитер и прочие персонажи в неё не входят. Так что в ущерб реализму, зная положение и скорости Земли и Луны мы пересчитаем начальные условия для Солнца, так, чтобы центр масс системы Солнце - Земля - Луна находился в начале координат. Для центра масс нашей механической системы справедливо уравнение

Поместим центр масс в начало координат, то есть зададимся , тогда

откуда

Перейдем к безразмерным координатам и параметрам, выбрав

Дифференцируя (6) по времени и переходя к безразмерному времени получаем и соотношение для скоростей

где

Теперь напишем программу, которая сформирует начальные условия в выбранных нами «попугаях». На чем будем писать? Конечно же на Питоне! Ведь, как известно, это самый лучший язык для математического моделирования.

Однако, если уйти от сарказма, то мы действительно попробуем для этой цели питон, а почему нет? Я обязательно приведу ссылку на весь код в моем профиле Github .

Расчет начальных условий для системы Луна - Земля - Солнце

# # Исходные данные задачи # # Гравитационная постоянная G = 6.67e-11 # Массы тел (Луна, Земля, Солнце) m = # Расчитываем гравитационные параметры тел mu = print("Гравитационные параметры тел") for i, mass in enumerate(m): mu.append(G * mass) print("mu[" + str(i) + "] = " + str(mu[i])) # Нормируем гравитационные параметры к Солнцу kappa = print("Нормированные гравитационные параметры") for i, gp in enumerate(mu): kappa.append(gp / mu) print("xi[" + str(i) + "] = " + str(kappa[i])) print("\n") # Астрономическая единица a = 1.495978707e11 import math # Масштаб безразмерного времени, c T = 2 * math.pi * a * math.sqrt(a / mu) print("Масштаб времени T = " + str(T) + "\n") # Координаты NASA для Луны xL = 5.771034756256845E-01 yL = -8.321193799697072E-01 zL = -4.855790760378579E-05 import numpy as np xi_10 = np.array() print("Начальное положение Луны, а.е.: " + str(xi_10)) # Координаты NASA для Земли xE = 5.755663665315949E-01 yE = -8.298818915224488E-01 zE = -5.366994499016168E-05 xi_20 = np.array() print("Начальное положение Земли, а.е.: " + str(xi_20)) # Расчитываем начальное положение Солнца, полагая что начало координат - в центре масс всей системы xi_30 = - kappa * xi_10 - kappa * xi_20 print("Начальное положение Солнца, а.е.: " + str(xi_30)) # Вводим константы для вычисления безразмерных скоростей Td = 86400.0 u = math.sqrt(mu / a) / 2 / math.pi print("\n") # Начальная скорость Луны vxL = 1.434571674368357E-02 vyL = 9.997686898668805E-03 vzL = -5.149408819470315E-05 vL0 = np.array() uL0 = np.array() for i, v in enumerate(vL0): vL0[i] = v * a / Td uL0[i] = vL0[i] / u print("Начальная скорость Луны, м/с: " + str(vL0)) print(" -//- безразмерная: " + str(uL0)) # Начальная скорость Земли vxE = 1.388633512282171E-02 vyE = 9.678934168415631E-03 vzE = 3.429889230737491E-07 vE0 = np.array() uE0 = np.array() for i, v in enumerate(vE0): vE0[i] = v * a / Td uE0[i] = vE0[i] / u print("Начальная скорость Земли, м/с: " + str(vE0)) print(" -//- безразмерная: " + str(uE0)) # Начальная скорость Солнца vS0 = - kappa * vL0 - kappa * vE0 uS0 = - kappa * uL0 - kappa * uE0 print("Начальная скорость Солнца, м/с: " + str(vS0)) print(" -//- безразмерная: " + str(uS0))


Выхлоп программы

Гравитационные параметры тел mu = 4901783000000.0 mu = 386326400000000.0 mu = 1.326663e+20 Нормированные гравитационные параметры xi = 3.6948215183509304e-08 xi = 2.912016088486677e-06 xi = 1.0 Масштаб времени T = 31563683.35432583 Начальное положение Луны, а.е.: [ 5.77103476e-01 -8.32119380e-01 -4.85579076e-05] Начальное положение Земли, а.е.: [ 5.75566367e-01 -8.29881892e-01 -5.36699450e-05] Начальное положение Солнца, а.е.: [-1.69738146e-06 2.44737475e-06 1.58081871e-10] Начальная скорость Луны, м/с: -//- безразмерная: [ 5.24078311 3.65235907 -0.01881184] Начальная скорость Земли, м/с: -//- безразмерная: Начальная скорость Солнца, м/с: [-7.09330769e-02 -4.94410725e-02 1.56493465e-06] -//- безразмерная: [-1.49661835e-05 -1.04315813e-05 3.30185861e-10]

7. Интегрирование уравнений движения и анализ результатов

Собственно само интегрирование сводится к более-менее стандартной для SciPy процедуре подготовки системы уравнений: преобразованию системы ОДУ к форме Коши и вызову соответствующих функций-решателей. Для преобразования системы к форме Коши вспоминаем, что

Тогда введя вектор состояния системы

сводим (7) и (5) к одному векторному уравнению

Для интегрирования (8) с имеющимися начальными условиями напишем немного, совсем немного кода

Интегрирования уравнений движения в задаче трех тел

# # Вычисление векторов обобщенных ускорений # def calcAccels(xi): k = 4 * math.pi ** 2 xi12 = xi - xi xi13 = xi - xi xi23 = xi - xi s12 = math.sqrt(np.dot(xi12, xi12)) s13 = math.sqrt(np.dot(xi13, xi13)) s23 = math.sqrt(np.dot(xi23, xi23)) a1 = (k * kappa / s12 ** 3) * xi12 + (k * kappa / s13 ** 3) * xi13 a2 = -(k * kappa / s12 ** 3) * xi12 + (k * kappa / s23 ** 3) * xi23 a3 = -(k * kappa / s13 ** 3) * xi13 - (k * kappa / s23 ** 3) * xi23 return # # Система уравнений в нормальной форме Коши # def f(t, y): n = 9 dydt = np.zeros((2 * n)) for i in range(0, n): dydt[i] = y xi1 = np.array(y) xi2 = np.array(y) xi3 = np.array(y) accels = calcAccels() i = n for accel in accels: for a in accel: dydt[i] = a i = i + 1 return dydt # Начальные условия задачи Коши y0 = # # Интегрируем уравнения движения # # Начальное время t_begin = 0 # Конечное время t_end = 30.7 * Td / T; # Интересующее нас число точек траектории N_plots = 1000 # Шаг времени между точкими step = (t_end - t_begin) / N_plots import scipy.integrate as spi solver = spi.ode(f) solver.set_integrator("vode", nsteps=50000, method="bdf", max_step=1e-6, rtol=1e-12) solver.set_initial_value(y0, t_begin) ts = ys = i = 0 while solver.successful() and solver.t <= t_end: solver.integrate(solver.t + step) ts.append(solver.t) ys.append(solver.y) print(ts[i], ys[i]) i = i + 1


Посмотрим что у нас получилось. Получилась пространственная траектория Луны на первые 29 суток от выбранной нами начальной точки


а так же её проекция в плоскость эклиптики.


«Эй, дядя, что ты нам впариваешь?! Это же окружность!».

Во-первых, таки не окружность - заметно смещение проекции траектории от начала координат вправо и вниз. Во-вторых - ничего не замечаете? Не, ну правда?


Обещаю подготовить обоснование того (на основе анализа погрешностей счета и данных NASA), что полученное смещение траектории не есть следствие ошибок интегрирования. Пока предлагаю читателю поверить мне на слово - это смещение есть следствие солнечного возмущения лунной траектории. Крутанем-ка еще один оборот



Во как! Причем обратите внимание на то, что исходя из начальных данных задачи Солнце находится как раз в той стороне, куда смещается траектория Луны на каждом обороте. Да это наглое Солнце ворует у нас наш любимый спутник! Ох уж это Солнце!

Можно сделать вывод, что солнечная гравитация влияет на орбиту Луны достаточно существенно - старушка не ходит по небу дважды одним и тем же путём. Картинка за полгода движения позволяет (по крайней мере качественно) убедится в этом (картинка кликабельна)

Интересно? Ещё бы. Астрономия вообще наука занятная.

Постскриптум

В вузе, где я учился и работал без малого семь лет - Новочеркасском политехе - ежегодно проводилась зональная олимпиада студентов по теоретической механике вузов Северного Кавказа. Трижды мы принимали и Всероссийскую олимпиаду. На открытии, наш главный «олимпиец», профессор Кондратенко А.И., всегда говорил: «Академик Крылов называл механику поэзией точных наук».

Я люблю механику. Всё то хорошее, чего я добился в своей жизни и карьере произошло благодаря этой науке и моим замечательным учителям. Я уважаю механику.

Поэтому, я никогда не позволю издеваться над этой наукой и нагло эксплуатировать её в своих целях никому, будь он хоть трижды доктор наук и четырежды лингвист, и разработал хоть миллион учебных программ. Я искренне считаю, что написание статей на популярном публичном ресурсе должно предусматривать их тщательную вычитку, нормальное оформление (формулы LaTeX - это не блажь разработчиков ресурса!) и отсутствие ошибок, приводящих к результатам нарушающим законы природы. Последнее вообще «маст хэв».

Я часто говорю своим студентам: «компьютер освобождает ваши руки, но это не значит, что при этом нужно отключать и мозг».

Ценить и уважать механику я призываю и вас, мои уважаемые читатели. Охотно отвечу на любые вопросы, а исходный текст примера решения задачи трех тел на языке Python, как и обещал, Добавить метки

ЛИБРАЦИЯ ЛУНЫ: Луна совершает полный оборот вокруг Земли за 27,32166 суток. Точно за такое же время она совершает и оборот вокруг собственной оси. Это не случайное совпадение, а связано с влиянием Земли на свой спутник. Поскольку период обращения Луны вокруг своей оси и вокруг Земли одинаков, Луна должна быть обращена к Земле всегда одной стороной. Однако во вращении Луны и ее движении вокруг Земли существуют некоторые неточности.

Вращение Луны вокруг оси происходит весьма равномерно, но вот скорость обращения ее вокруг нашей планеты меняется в зависимости от расстояния до Земли. Минимальное расстояние от Луны до Земли 354 тыс. км, максимальное – 406 тыс. км. Точка лунной орбиты, ближайшая к Земле, называется перигеем от «пери» (peri) – вокруг, около, (возле и «re» (ge) – земля], точка максимального удаления – апогеем [от греч. «апо» (аро) – сверху, над и «re». На более близких расстояниях от Земли скорость движения Луны по орбите увеличивается, поэтому ее вращение вокруг своей оси несколько «отстает». В результате для нас становится видимой небольшая часть обратной стороны Луны, восточного ее края. На второй половине своей околоземной орбиты Луна замедляет свое движение, в результате чего она немного «спешит» с поворотом вокруг своей оси, и мы можем увидеть небольшую часть ее другого полушария с западного края. Человеку, который наблюдает за Луной в телескоп из ночи в ночь, кажется, что она медленно колеблется вокруг своей оси, сначала в течение двух недель в восточном направлении, а затем столько же – в западном. (Правда, такие наблюдения практически затруднены тем, что обычно часть поверхности Луны затеняется Землей. – Ред.) Рычажные весы тоже некоторое время колеблются около положения равновесия. По-латыни весы – «либра» (libra), поэтому кажущиеся колебания Луны, обусловленные неравномерностью ее движения по орбите вокруг Земли при равномерности вращения вокруг своей оси, называют либрацией Луны. Либрации Луны происходят не только в направлении восток-запад, но и в направлении север – юг, так как ось вращения Луны наклонена к плоскости ее орбиты. Тогда наблюдатель видит небольшой участок обратной стороны Луны в районах ее северного и южного полюсов. Благодаря обоим видам либрации с Земли можно видеть (не одновременно) почти 59 % поверхности Луны.

ГАЛАКТИКА


Солнце – одна из многих сотен миллиардов звезд, собранных в гигантское скопление, имеющее линзообразную форму. Диаметр этого скопления примерно втрое больше его толщины. Наша Солнечная система находится во внешнем тонком его крае. Звезды похожи на отдельные светлые точки, рассыпанные в окружающей темноте далекого космоса. Но если мы посмотрим вдоль диаметра линзы собранного скопления, то увидим неисчислимое количество других звездных скоплений, которые образуют мерцающую мягким светом ленту, протянувшуюся через весь небосвод.

Древние греки считали, что эта «дорожка» на небе образована каплями пролившегося молока, и назвали ее галактикой. «Галактикос» (galakticos) погречески млечный от «галактос» (galaktos), что означает молоко. Древние римляне называли ее «виа лактеа», что дословно означает Млечный Путь. Как только начались регулярные исследования с помощью телескопа, среди далеких звезд были обнаружены туманные скопления. Английские астрономы отец и сын Гершели, а также французский астроном Шарль Мессье были одними из первых, кто обнаружил эти объекты. Их назвали небулами от латинского «нэбуля» (nebula) туман. Это латинское слово было заимствовано из греческого языка В греческом «нефеле» (nephele) тоже означало облако, туман а богиню туч именовали Нефёла. Многие из обнаруженных туманностей оказались пылевыми облаками, которые закрывали некоторые участки нашей Галактики, не пропуская от них свет.

При наблюдении они походили на черные объекты. Но многие «облака» расположены далеко за пределами Галактики и представляют собой скопления звезд, такие же большие, как и наш собственный космический «дом». Малыми они кажутся только из-за гигантских расстояний, которые разделяют нас. Самой ближней к нам галактикой является знаменитая туманность Андромеды. Такие далекие звездные скопления называют еще экстрагалактическими туманностями «экстра» (extra) по латыни означает приставку «вне», «сверх». Чтобы отличать их от относительно небольших по размеру пылевых образований внутри нашей Галактики. Существуют сотни миллиардов таких экстрагалактических туманностей – галактик, поскольку теперь говорят о галактиках во множественном числе. Более того: поскольку галактики сами образуют скопления в космическом пространстве, то говорят о галактиках галактик.

ИНФЛЮЭНЦА


Древние считали, что звезды оказывают влияние на судьбы людей, поэтому была даже целая наука, которая занималась определением того, как они это делают. Речь идет, конечно, об астрологии, название которой происходит от греческих слов «астер» (aster) – звезда и «логос» (logos) – слово. Другими словами, астролог – «говорящий о звездах». Обычно «-логия» служит непременной составляющей в названиях многих наук, однако астрологи настолько дискредитировали свою «науку», что для истинной науки о звездах пришлось подыскать другой термин: астрономия. Греческое слово «немейн» (nemein) означает распорядок, закономерность. Поэтому астрономия – наука, «упорядочивающая» звезды, исследующая законы их движения, возникновения и угасания. Астрологи считали, что звезды излучают загадочную силу, которая, стекая на Землю, управляет судьбами людей. По-латыни вливаться, стекать, проникать – «инфлюэре» (influere), это слово употребляли, когда хотели сказать, что звездная сила «вливается» в человека. В те дни истинных причин болезней не знали, и вполне естественно было услышать от врача, что и посетивший человека недуг – следствие влияния звезд. Поэтому одну из самых распространенных болезней, которая сегодня нам известна как грипп, назвали инфлюэнцей (дословно – влиянием). Это название родилось в Италии (ит. influenca).

Итальянцы обратили внимание на связь между малярией и болотами, но просмотрели комара. Для них он был всего лишь мелким досаждающим насекомым; реальную причину они видели в миазмах плохого воздуха над болотами (он несомненно был «тяжелым» из-за повышенной влажности и выделяемых распадающимися растениями газов). Итальянское слово для определения чего-то плохого – «мала» (mala), поэтому плохой, тяжелый воздух (aria) они называли «малариа» (malaria), что стало со временем общепринятым научным названием всем известной болезни. Сегодня по-русски никто, конечно, не назовет грипп инфлюэнцей, хотя поанглийски он так и называется, правда, в разговорной речи чаще всего сократившись до коротенького «флу» (flu).

Перигелий


Древние греки считали, что небесные тела движутся по орбитам, которые представляют собой идеальные окружности, потому как окружность – идеальная замкнутая кривая, а сами небесные тела совершенны. Латинское слово «орбита» (orbita) значит колея, дорога, но образовано оно от «орбис» (orbis) – круг.

Однако в 1609 г. немецкий астроном Иоганн Кеплер доказал, что каждая планета движется вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце. А если Солнце находится не в центре окружности, то планеты в некоторых точках своей орбиты приближаются к нему больше, чем в других. Ближайшая к Солнцу точка орбиты небесного тела, обращающегося вокруг него, называется перигелием.

В греческом языке «пери-» (peri-) – часть сложных слов, означающая около, вокруг, а «гелиос» (hellos) – Солнце, так что перигелий можно перевести как «вблизи Солнца». Подобным образом точку наибольшего удаления небесного тела от Солнца греки стали называть «апгелиос» (арheliqs). Приставка «апо» (аро) означает вдали, от, поэтому это слово можно перевести как «вдали от Солнца». В русской передаче слово «апгелиос» превратилось в афелий: латинские буквы р и h рядом читаются как «ф». Эллиптическая орбита Земли близка к идеальной окружности (здесь греки были правы), поэтому у Земли разница между перигелием и афелием составляет всего 3 %. Термины для небесных тел, описывающих орбиты вокруг других небесных тел, были образованы аналогичным образом. Так, Луна обращается вокруг Земли по эллиптической орбите, при этом Земля находится в одном из ее фокусов. Точку наибольшего приближения Луны к Земле назвали перигеем «re», (ge) по-гречески Земля, а точку наибольшего удаления от Земли – апогеем. Астрономам известны двойные звезды. В этом случае две звезды обращаются по эллиптическим орбитам вокруг общего центра масс под действием сил тяготения, причем, чем больше масса звезды-спутника, тем меньше эллипс. Точка наибольшего сближения обращающейся звезды с главной звездой называется периастром, а точка наибольшего удаления – апоастром от греч. «астрон» (astron) – звезда.

Планета - определение


Еще в далекой древности человек не мог не заметить, что звезды занимают постоянное положение на небе. Они двигались только группой и совершали лишь небольшие перемещения вокруг некой точки на северном небосклоне. Это было очень далеко от точек восхода и заката, где появлялись и исчезали Солнце и Луна.

Каждую ночь происходило неприметное смещение всей картины звездного неба. Каждая звезда всходила на 4 минуты раньше и на 4 минуты раньше по сравнению с предыдущей ночью заходила, поэтому на западе звезды постепенно уходили с горизонта, а на востоке появлялись новые. Через год круг замыкался, и картина восстанавливалась. Однако на небе наблюдалось пять похожих на звезды объектов, которые светились столь же ярко, а то и ярче, чем звезды, но не подчинялись общему распорядку. Один из таких объектов сегодня мог располагаться между двумя звездами, а завтра сместиться, еще через ночь смещение было еще большим и т.д. Три таких объекта (мы называем их Марс, Юпитер и Сатурн) тоже совершали полный круг на небесах, но довольно сложным путем. А два других (Меркурий и Венера) не отходили слишком далеко от Солнца. Другими словами, эти объекты «бродили» между звездами.

Греки называли своих бродяг «планэтэс» (planetes), вот и этих небесных бродяг они назвали планетами. В средние века к планетам причисляли Солнце и Луну. Но к XVII в. астрономы уже осознали тот факт, что Солнце является центром Солнечной системы, поэтому планетами стали называть небесные тела, которые обращаются вокруг Солнца. Солнце потеряло статус планеты, а Земля, наоборот, приобрела его. Луна тоже перестала быть планетой, потому что она вращается вокруг Земли и только вместе с Землей обходит Солнце.

Можно сказать, что на первый взгляд Луна просто движется вокруг планеты Земля с определенной скоростью и по определенной орбите.

В реальности это очень сложный трудноописуемый с научной точки зрения процесс движения космического тела, протекающий под воздействием множества различных факторов. Таких, например как, форма Земли, если мы помним из школьной программы, она немного сплюснута, а так же очень сильно влияет то, что например, Солнце притягивает ее в 2,2 раза сильнее, чем наша родная планета.

Снимки космического аппарата Deep Impact последовательность перемещения Луны

При этом производя точные расчеты движения, необходимо так же учитывать, что посредством приливного взаимодействия Земля передает Луне момент импульса вращения, тем самым создавая силу, заставляющую ее отдаляться от себя. При этом гравитационное взаимодействие данных космических тел является не постоянным и с увеличением расстояния оно уменьшается, приводя к уменьшению и скорость удаления Луны. Вращение Луны вокруг Земли относительно звёзд называется сидерическим месяцем и равен 27,32166 суток.

Почему она светится?

Вы не задавались вопросом, почему иногда мы видим только часть Луны? Или почему она светится? Давайте разберёмся в этом! Спутник отражает лишь 7% солнечного света падающего на нее. Это происходит, потому что в период бурной активности Солнца лишь отдельные участки ее поверхности способны поглощать и накапливать солнечную энергию, а после слабо излучать ее.

Пепельный свет — отраженный свет от Земли

Сама по себе она не может светиться, а способна лишь отражать свет Солнца. Поэтому мы видим только ту ее часть, которую ранее осветило Солнце. Данный спутник движется по определенной орбите вокруг нашей планеты и угол между ним, Солнцем и Землей постоянно меняется, в результате мы и видим различные фазы Луны.

Инфографика «Фазы Луны»

Время между новолуниями составляет 28,5 дня. То, что один месяц длиннее другого можно объяснить движением Земли вокруг Солнца, то есть когда спутник делает полный оборот вокруг Земли, сама планета в этот момент продвигается на 1/13 часть вокруг своей орбиты. И что бы Луна снова была между Солнцем и Землей ей нужно еще около двух суток времени.

Несмотря на то, что она постоянно вращается вокруг своей оси, она всегда смотрит на Землю одной и той же стороной, это значит, что вращение, которое она совершает вокруг собственной оси и вокруг самой планеты синхронно. Эта синхронность вызвана приливами.

Обратная сторона

Обратная сторона

Наш спутник вращается вокруг собственной оси равномерно, а вокруг Земли согласно определенному закону, суть которого состоит в следующем: данное движение неравномерно — вблизи перигея оно быстрее, а вот вблизи апогея чуть медленнее.

Иногда возникает возможность взглянуть на оборотную сторону Луны, если вы находитесь на востоке или, например на западе. Это явление носит название оптической либрацией по долготе, существует еще и оптическая либрация по широте. Она возникает из-за наклона лунной оси относительно Земли, и наблюдать это можно на юге и севере.

О Луне говорят, что она спутник Земли. Смысл этого заключается в том, что Луна сопровождает Землю в ее постоянном движении вокруг Солнца,- она сопутствует ей. В то время как Земля движется вокруг Солнца, Луна движется вокруг нашей планеты.

Движение Луны вокруг Земли можно в целом представить себе так: то она находится в той же стороне, где видно Солнце, и в это время движется как бы навстречу Земле, мчащейся по своему пути вокруг Солнца: то переходит на другую сторону и движется в том же направлении, в каком мчится и наша земля. А в общем, Луна именно сопровождает нашу Землю. Это действительное движение Луны вокруг Земли легко может в короткий срок заметить всякий терпеливый и внимательный наблюдатель.

Собственное движение Луны вокруг земли заключается вовсе не в том, что она восходит и заходит или вместе со всем звездным небом подвигается от востока к западу, слева направо. Это кажущееся движение Луны происходит вследствие суточного вращения самой Земли, то есть по той же причине, по которой и Солнце восходит и заходит.

Что же касается собственного движения Луны вокруг Земли, то оно сказывается в другом: Луна как бы отстает от звезд в их видимом суточном движении.

В самом деле: заметьте какие-нибудь звезды в видимом близком соседстве с Луной в данный вечер ваших наблюдений. Запомните поточнее положение Луны относительно этих звезд. Затем, посмотрите на Луну через несколько часов или в следующий вечер. Вы убедитесь в том, что Луна отстала от замеченных вами звезд. Вы заметите, что звезды, бывшие от Луны справа, оказались теперь от Луны дальше, а к звездам, находившимся слева, Луна стала ближе, и тем ближе, чем больше прошло времени.

Это ясно свидетельствует о том, что, перемещаясь видимо для нас от востока к западу, вследствие вращения Земли, Луна в то же время медленно, но неуклонно подвигается вокруг Земли от запада к востоку, завершая полный оборот вокруг Земли примерно в месяц.

Расстояние это легко представить себе, сравнив его с видимым поперечником Луны. Оказывается, что за один час Луна проходит на небе расстояние приблизительно равное ее поперечнику, а за сутки - дуговой путь, равный тринадцати градусам.

пунктиром начерчена орбита Луны, тот замкнутый, почти круговой путь, по которому, на расстоянии около четырехсот тысяч километров, Луна движется вокруг Земли. Нетрудно определить длину этого огромного пути, если мы знаем радиус лунной орбиты. Подсчет приводит к следующему результату: орбита Луны равна приблизительно двум с половиной миллионам километров.

Нет ничего легче получить сейчас же и интересующие нас сведения о скорости движения Луны вокруг Земли. Но для этого* нам надо знать поточнее тот период, в течение которого Луна пробежит весь этот огромный путь. Округляя, мы можем этот период приравнять к месяцу, то есть приблизительно считать его равным семистам часам. Разделив длину орбиты на 700, мы можем установить, что Луна пробегает за час расстояние примерно в 3600 км, то есть около одного километра в секунду.

Эта средняя скорость движения Луны показывает, что далеки не так медленно движется Луна вокруг Земли, как это может показаться по наблюдениям ее смещения среди звезд. Наоборот, Луна стремительно мчится по своей орбите. Но так как мы видим Луну на расстоянии в несколько сот тысяч километров, то это ее стремительное движение мы едва замечаем. Так и курьерский поезд, наблюдаемый нами вдали, кажется еле передвигающимся, тогда как он проносится мимо близких предметов с чрезвычайной быстротой.

Для более точных вычислений скорости движения Луны читатели могут воспользоваться следующими данными.

Длина лунной орбиты - 2 414 000 км. Период обращения Луны вокруг Земли 27 суток 7 час. 43 мин. 12 сек.

Не" подумал ли кто-нибудь из читателей, что в последней строке была допущена опечатка? Мы незадолго до этого (стр. 13) сказали, что цикл лунных фаз проходит за 29.53 или 29% суток, а теперь указываем, что полный оборот Луны вокруг Земли происходит за 27г/з суток. Если указанные данные верны, то в чем заключается разница? Об этом мы скажем немного далее.

Луна - единственное небесное тело, которое обращается вокруг Земли, если не считать искусственных спутников Земли, созданных человеком за последние годы.

Луна непрерывно перемещается по звездному небу и по отношению к какой-нибудь звезде за сутки смещается навстречу суточному вращению неба приблизительно на 13°, а через 27,1/3 суток возвращается к тем же звездам, описав по небесной сфере полный круг. Поэтому промежуток времени, в течение которого Луна совершает полный оборот вокруг Земли по отношению к звездам, называется звездным (или сидерическим ) месяцем; он составляет 27,1/3 суток. Луна движется вокруг Земли по эллиптической орбите, поэтому расстояние от Земли до Луны изменяется почти на 50 тыс. км. Среднее расстояние от Земли до Луны принимают равным 384 386 км (округленно - 400 000 км). Это в десять раз больше длины экватора Земли.

Луна сама не излучает света, поэтому на небе видна только освещенная Солнцем ее поверхность- дневная сторона. Ночная же, темная, не видна. Перемещаясь по небу с запада на восток, Луна за 1 ч сдвигается на фоне звезд примерно на пол градуса, т. е. на величину, близкую к ее видимому размеру, а за сутки-на 13º. ЗА месяц Луна на небе догоняет и перегоняет Солнце, при этом происходит смена лунных фаз: новолуние , первая четверть , полнолуние и последняя четверть .

В новолуние Луну не разглядеть даже в телескоп. Она располагается в том же направлении, что и Солнце (только выше или ниже его), и повернута к Земле ночным полушарием. Через два дня, когда Луна удалится от Солнца, узкий серп можно увидеть за несколько минут до ее захода в западной стороне неба на фоне вечерней зари. Первое появление лунного серпа после новолуния греки называли «неомения» («новая Луна»), С этого момента начинается лунный месяц.

Через 7 суток 10 ч после новолуния наступает фаза называемая первой четвертью . За это время Луна удалилась от Солнца на 90º. С Земли видна только правая половина лунного диска, освещенная Солнцем. После захода Солнца Луна находится в южной стороне неба и заходит около полуночи. Продолжая перемещаться от Солнца все левее. Луна с вечера оказывается уже на восточной стороне неба. Заходит она уже после полуночи, с каждым днем все позднее и позднее.

Когда Луна оказывается в стороне, противоположной Солнцу (на угловом расстоянии 180 от него), наступает полнолуние . С момента новолуния прошло 14 суток 18 ч. После этого Луна начинает приближаться к Солнцу справа.

Происходит уменьшение освещения правой части лунного диска. Угловое расстояние между ней и Солнцем уменьшается от 180 до 90º. Опять видна только половина лунного диска, но уже левая его часть. После новолуния прошло 22 дня 3 ч. Наступила последняя четверть . Луна восходит около полуночи и светит в течение всей второй половины ночи, к восходу Солнца оказываясь в южной стороне неба.

Ширина лунного серпа продолжает уменьшаться, а сама Луна постепенно приближается к Солнцу с правой (западной) стороны. Появляясь на восточном небосклоне, с каждыми сутками все позднее, лунный серп становится совсем узким, но рогами повернут вправо и похож на букву «С».

Говорят, Луна старая. Виден пепельный свет на ночной части диска. Угловое расстояние между Луной и Солнцем уменьшается до 0º. Наконец, Луна догоняет Солнце и снова становится невидимой. Наступает следующее новолуние. Лунный месяц закончился. Прошло 29 дней 12 ч 44 мин 2,8 с, или почти 29,53 суток. Этот период называется синодическим месяцем (от греч. sy" nodos-соединение, сближение).

Синодический период связан с видимым на небе расположением небесного тела относительно Солнца. Лунный синодический месяц -это промежуток времени между последовательными одноименными фазами Луны.

Свой путь на небе относительно звезд Луна совершает за 27 суток 7 ч 43 мин 11,5 с (округленно - 27,32 суток). Этот период называется сидерическим (от лат. sideris-звезда), или звездным месяцем .

№7 Затмение Луны и Солнца, их анализ.

Солнечные и лунные затмения - интереснейшее явление природы, знакомое человеку с древнейших времен. Они бывают сравнительно часто, но видны не из всех местностей земной поверхности и поэтому многим кажутся редкими.

Солнечное затмение происходит, когда наш естественный спутник - Луна - в своем движении проходит на фоне диска Солнца. Это всегда происходит в момент новолуния. Луна расположена ближе к Земле, чем Солнце, почти в 400 раз, и в тоже время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Земли и Солнца почти одинаковые, и Луна может закрыть собою Солнце. Но не каждое новолуние происходит солнечное затмение. Из-за наклона орбиты Луны к земной орбите Луна обычно немного "промахивается" и проходит выше или ниже Солнца в момент новолуния. Однако не менее 2-х раз в году (но не более пяти) тень Луны падает на Землю и происходит солнечное затмение.

Лунная тень и полутень падают на Землю в виде овальных пятен, которые со скоростью 1 км. в сек. пробегают по земной поверхности с запада на восток. В районах, оказавшихся в лунной тени видно полное солнечное затмение, то есть Солнце полностью закрыто Луной. В местностях, покрытых полутенью происходит частное солнечное затмение, то есть Луна закрывает лишь часть солнечного диска. За границей полутени затмения вообще не происходит.

Наибольшая продолжительность полной фазы затмения не превышает 7 мин. 31 сек. Но чаще всего это две - три минуты.

Солнечное затмение начинается с правого края Солнца. Когда Луна полностью закроет Солнце наступает полумрак, как в темные сумерки, и на потемневшем небе появляются самые яркие звезды и планеты, а вокруг Солнца видно красивое лучистое сияние жемчужного цвета - солнечная корона, представляющая собой внешние слои солнечной атмосферы, не видимые вне затмения из-за их небольшой яркости в сравнении с яркостью дневного неба. Вид короны из года в год меняется в зависимости от солнечной активности. Над всем горизонтом вспыхивает розовое заревое кольцо - это в местность, покрытую лунной тенью проникает солнечный свет из соседних зон, где полного затмения не происходит, а наблюдается только частное.
СОЛНЕЧНЫЕ И ЛУННЫЕ ЗАТМЕНИЯ

Солнце, Луна и Земля в стадии новолуния и полнолуния редко лежат на одной линии, т.к. лунная орбита лежит не точно в плоскости эклиптики, а под наклоном к ней в 5 градусов.

Солнечные затмения новолуния . Луна загораживает от нас Солнце.

Лунные затмения . Солнце, Луна и Земля лежат на одной линии в стадии полнолуния . Земля загораживает Луну от Солнца. Луна при этом становится кирпично-красной.

Каждый год в среднем происходит по 4 солнечных и лунных затмения. Они всегда сопровождают друг друга. Скажем, если новолуние совпадает с солнечным затмением, то лунное затмение наступает через две недели, в фазе полнолуния.

Астрономически солнечные затмения происходят, когда Луна при своем движении вокруг Солнца полностью или частично заслоняет Солнце. Видимые диаметры Солнца и Луны почти одинаковы, поэтому Луна заслоняет Солнце полностью. Но видно это с Земли в полосе полной фазы. По обе стороны полосы полной фазы наблюдается частное солнечное затмение.

Ширина полосы полной фазы солнечного затмения и его продолжительность зависят от взаимных расстояний Солнца, Земли и Луны. В следствии изменения расстояний видимый угловой диаметр Луны тоже меняется. Когда он чуть больше солнечного, полное затмение может длиться до 7,5 мин, когда равен, то одно мгновение, если же он меньше, то Луна вообще не закрывает Солнца полностью. В последнем случае происходит кольцеобразное затмение: вокруг темного лунного диска видно узкое яркое солнечное кольцо.

Во время полного солнечного затмения Солнце имеет вид черного диска, окруженного сиянием (короной). Дневной свет настолько ослабевает, что иногда можно видеть на небе звезды.

Полное лунное затмение происходит, когда Луна попадает в конус земной тени.

Полное лунное затмение может длиться 1,5-2 часа. Его можно наблюдать со всего ночного полушария Земли, где Луна в момент затмения находилась над горизонтом. Поэтому в данной местности полные лунные затмения удается наблюдать значительно чаще солнечных.

Во время полного лунного затмения Луны лунный диск остается видимым, но приобретает темно-красный оттенок.

Солнечное затмение происходит в новолуние, а лунное - в полнолуние. Чаще всего в году бывает два лунных и два солнечных затмения. Максимально возможное число затмений - семь. Через определенный промежуток времени лунные и солнечные затмения повторяются в том же порядке. Этот промежуток был назван саросом, что в переводе с египетского означает - повторение. Сарос составляет примерно 18 лет, 11 дней. В течении каждого сароса происходит 70 затмений, из них 42 солнечных и 28 лунных. Полные солнечные затмения с определенной местности наблюдаются реже, чем лунные, один раз в 200-300 лет.

УСЛОВИЯ ДЛЯ ЗАТМЕНИЯ СОЛНЦА

Во время солнечного затмения между нами и Солнцем проходит Луна и скрывает его от нас. Рассмотрим подробнее условия, при которых может наступить затмение Солнца.

Наша планета Земля, вращаясь в течение суток вокруг своей оси, одновременно движется вокруг Солнца и за год делает полный оборот. У Земли есть спутник - Луна. Луна движется вокруг Земли, и полный оборот совершает за 29 1/2 суток.

Взаимное расположение этих трех небесных тел все время меняется. При своем движении вокруг Земли Луна в определенные периоды времени оказывается между Землей и Солнцем. Но Луна - темный, непрозрачный твердый шар. Оказавшись между Землей и Солнцем, она, словно громадная заслонка, закрывает собой Солнце. В это время та сторона Луны, которая обращена к Земле, оказывается темной, неосвещенной. Следовательно, солнечное затмение может произойти только во время новолуния. В полнолуние Луна проходит от Земли в стороне, противоположной Солнцу, и может попасть в тень, отбрасываемую земным шаром. Тогда мы будем наблюдать лунное затмение.

Среднее расстояние от Земли до Солнца составляет 149,5 млн. км,а среднее расстояние от Земли до Луны - 384 тыс. км.

Чем ближе предмет, тем большим он нам кажется. Луна по сравнению с Солнцем ближе к нам почти: в 400 раз, и в то же время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Луны и Солнца почти одинаковы. Луна, таким образом, может закрыть от нас Солнце.

Однако расстояния Солнца и Луны от Земли не остаются постоянными, а слегка изменяются. Происходит это потому, что путь Земли вокруг Солнца и путь Луны вокруг Земли - не окружности, а эллипсы. С изменением расстояний между этими телами изменяются и их видимые размеры.

Если в момент солнечного затмения Луна находится в наименьшем удалении от Земли, то лунный диск будет несколько больше солнечного. Луна целиком закроет собой Солнце, и затмение будет полным. Если же во время затмения Луна находится в наибольшем удалении от Земли, то она будет иметь несколько меньшие видимые размеры и закрыть Солнце целиком не сможет. Останется незакрытым светлый ободок Солнца, который во время затмения будет виден как яркое тоненькое кольцо вокруг черного диска Луны. Такое затмение называют кольцеобразным.

Казалось бы, солнечные затмения должны случаться ежемесячно, каждое новолуние. Однако этого не происходит. Если бы Земля и Луна двигались видной плоскости, то в каждое новолуние Луна действительно оказывалась бы точно на прямой линии, соединяющей Землю и Солнце, и происходило бы затмение. На самом деле Земля движется вокруг Солнца в одной плоскости, а Луна вокруг Земли - в другой. Эти плоскости не совпадают. Поэтому часто во время новолуний Луна приходит либо выше Солнца, либо ниже.

Видимый путь Луны на небе не совпадает с тем путем, по которому движется Солнце. Эти пути пересекаются в двух противоположных точках, которые называются узлами лунной о р б и т ы. Вблизи этих точек пути Солнца и Луны близко подходят друг к другу. И только в том случае, когда новолуние происходит вблизи узла, оно сопровождается затмением.

Затмение будет полным или кольцеобразным, если в новолуние Солнце и Луна будут находиться почти в узле. Если же Солнце в момент новолуния окажется па некотором расстоянии от узла, то центры лунного н солнечного дисков не совпадут и Луна закроет Солнце лишь частично. Такое затмение называется частным.

Луна перемещается среди звезд с запада на восток. Поэтому закрытие Солнца Луной начинается с его западного, т. е. правого, края. Степень закрытия называется у астрономов фазой затмения.

Вокруг пятна лунной тени располагается область полутени, здесь затмение бывает частным. Поперечник области полутени составляет около 6-7 тыс. км. Для наблюдателя, который будет находиться вблизи края этой области, лишь незначительная доля солнечного диска покроется Луной. Такое затмение может вообще пройти незамеченным.

Можно ли точно предсказать наступление затмения? Ученые еще в древности установили, что через 6585 дней и 8 часов, что составляет 18 лет 11 дней 8 часов, затмения повторяются. Происходит это потому, что именно через такой промежуток времени расположение в пространстве Луны, Земли и Солнца повторяется. Этот промежуток был назван саросом, что значит повторение.

В течение одного сароса в среднем бывает 43 солнечных затмения, из них 15 частных, 15 кольцеобразных и 13 полных. Прибавляя к датам затмений, наблюдавшихся в течение одного сароса, 18 лет 11 дней и 8 часов, мы сможем предсказать наступление затмений и в будущем.

В одном и том же месте Земли полное солнечное затмение наблюдается один раз в 250 - 300 лет.

Астрономы вычислили условия видимости солнечных затмений на много лет вперед.

ЛУННЫЕ ЗАТМЕНИЯ

К числу «необыкновенных» небесных явлений относятся также лунные затмения. Происходят они так. Полный светлый круг Луны начинает темнеть у своего левого края, на лунном диске появляется круглая бурая тень, она продвигается все дальше и дальше и примерно через час покрывает всю Луну. Луна меркнет и становится красно-бурого цвета.

Диаметр Земли больше диаметра Луны почти в 4 раза, а тень от Земли даже на расстоянии Луны от Земли более чем в 2 1/2 раза превосходит размеры Луны. Поэтому Луна может целиком погрузиться в земную тень. Полное лунное затмение гораздо продолжительнее солнечного: оно может длиться 1 час 40 минут.

По той же причине, по которой солнечные затмения бывают не каждое новолуние, лунные затмения происходят не каждое полнолуние. Наибольшее число лунных затмений в году - 3, но бывают годы совсем без затмений; таким был, например, 1951 год.

Лунные затмения повторяются через тот же промежуток времени, что и солнечные. В течение этого промежутка, в 18 лет 11 дней 8 часов (сарос), бывает 28 лунных затмений, из них 15 частных и 13 полных. Как видите, число лунных затмений в саросе значительно меньше солнечных, и все же лунные затмения можно наблюдать чаще солнечных. Это объясняется тем, что Луна, погружаясь в тень Земли, перестает быть видимой на всей не освещенной Солнцем половине Земли. Значит, каждое лунное затмение видно на значительно большей территории, чем любое солнечное.

Затмившаяся Луна не исчезает совершенно, как Солнце во время солнечного затмения, а бывает слабо видимой. Происходит это потому, что часть солнечных лучей приходит сквозь земную атмосферу, преломляется в ней, входит внутрь земной тени и попадает на Луну. Так как красные лучи спектра менее всего рассеиваются и ослабляются в атмосфере. Луна во время затмения приобретает медно-красный или бурый оттенок.

ЗАКЛЮЧЕНИЕ

Трудно представить себе, что солнечные затмения происходят так часто: ведь каждому из нас наблюдать затмения приходится чрезвычайно редко. Объясняется это тем, что во время солнечного затмения тень от Луны падает не на всю Землю. Упавшая тень имеет форму почти круглого пятна, поперечник которого может достигать самое большее 270 км. Это пятно покроет лишь ничтожно малую долю земной поверхности. В данный момент только на этой части Земли и будет видно полное солнечное затмение.

Луна движется по своей орбите со скоростью около 1 км/сек, т. е. быстрее ружейной пули. Следовательно, ее тень с большой скоростью движется по земной поверхности и не может надолго закрыть какое-то одно место на земном шаре. Поэтому полное солнечное затмение никогда не может продолжаться более 8 минут.

Таким образом, лунная тень, двигаясь по Земле, описывает узкую, но длинную полосу, па которой последовательно наблюдается полное солнечное затмение. Протяженность полосы полного солнечного затмения достигает нескольких тысяч километров. И все же площадь, покрываемая тенью, оказывается незначительной по сравнению со всей поверхностью Земли. Кроме того, в полосе полного затмения часто оказываются океаны, пустыни и малонаселенные районы Земли.

Последовательность затмений повторяется почти точно в прежнем порядке через промежуток времени, который называется саросом (сарос – египетское слово, означающее «повторение»). Сарос, известный ещё в древности, составляет 18 лет и 11,3 суток. Действительно, затмения будут повторяться в прежнем порядке (после какого-либо начального затмения) спустя столько времени, сколько необходимо, чтобы та же фаза Луны случилась на том же расстоянии Луны от узла её орбиты, как и при начальном затмении.

В течение каждого сароса происходит 70 затмений, из них 41 солнечное и 29 лунных. Таким образом, солнечные затмения происходят чаще лунных, но в данной точке на поверхности Земли чаще можно наблюдать лунные затмения, так как они видны на целом полушарии Земли, тогда как солнечные затмения видны лишь в сравнительно узкой полосе. Особенно редко удаётся видеть полные солнечные затмения, хотя в течение каждого сароса их бывает около 10.

№8 Земля, как шар, эллипсоид вращения, 3-хосный эллипсоид, геоид.

Предположения о шарообразности земли появились в VI веке до нашей эры, а с IV века до нашей эры были высказаны некоторые из известных нам доказательств, что Земля имеет форму шара (Пифагор, Эратосфен). Античными учеными доказательства шарообразности Земли основывались на следующих явлениях:
- кругообразный вид горизонта на открытых пространствах, равнинах, морях и т.д.;
- круговая тень Земли на поверхности Луны при лунных затмениях;
- изменение высоты звезд при перемещении с севера (N) на юг (S) и обратно, обусловленное выпуклостью полуденной линии и др. В сочинении «О небе» Аристотель (384 – 322 г.г. до н.э.) указывал, что Земля не только шарообразна по форме, но и имеет конечные размеры; Архимед (287 – 212 г.г. до н.э.) доказывал, что поверхность воды в спокойном состоянии является шаровой поверхностью. Ими же введено понятие о сфероиде Земли, как геометрической фигуре, близкой по форме к шару.
Современная теория изучения фигуры Земли берет начало от Ньютона (1643 – 1727 г.г.), открывшего закон всемирного тяготения и применившего его для изучения фигуры Земли.
К концу 80-х годов XVII века были известны законы движения планет вокруг Солнца, весьма точные размеры земного шара, определенные Пикаром из градусных измерений (1670 г.), факт убывания ускорения силы тяжести на поверхности Земли от севера (N) к югу (S), законы механики Галилея и исследования Гюйгенса о движении тел по криволинейной траектории. Обобщение указанных явлений и фактов привели ученых к обоснованному взгляду о сфероидичности Земли, т.е. деформации ее в направлении полюсов (сплюсности).
Знаменитое сочинение Ньютона – «Математические начала натуральной философии» (1867 г.) излагает новое учение о фигуре Земли. Ньютон пришел к выводу о том, что фигура Земли должна быть по форме в виде эллипсоида вращения с небольшим полярным сжатием (этот факт обосновывался им уменьшением длины секундного маятника с уменьшением широты и уменьшением силы тяжести от полюса к экватору из-за того, что «Земля на экваторе немного выше»).
Исходя из гипотезы, что Земля состоит из однородной массы плотности, Ньютон теоретически определил полярное сжатие Земли (α) в первом приближении равном, примерно, 1: 230. На самом деле Земля неоднородна: кора имеет плотность 2,6 г/см3, тогда как средняя плотность Земли составляет 5,52 г/см3. Неравномерное распределение масс Земли продуцирует обширные пологие выпуклости и вогнутости, которые сочетаясь образуют возвышенности, углубления, впадины и другие формы. Заметим, что отдельные возвышения над Землей достигают высот более 8000 метров над поверхностью океана. Известно, что поверхность Мирового океана (МО) занимает 71 %, суша – 29 %; средняя глубина МО (Мирового океана) 3800м, а средняя высота суши – 875 м. Общая площадь земной поверхности равна 510 х 106 км2. Из приведенных данных следует, большая часть Земли покрыта водой, что дает основание принять ее за уровенную поверхность (УП)и, в конечном итоге, за общую фигуру Земли. Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней (по отвесной линии).
Сложную фигуру Земли, ограниченную уровенной поверхностью, являющуюся началом отчета высот, принято называть геоидом. Иначе, поверхность геоида, как эквипотенциальная поверхность, фиксируется поверхностью океанов и морей, находящихся в спокойном состоянии. Под материками поверхность геоида определяется как поверхность, перпендикулярная силовым линиям (рис. 3-1).
P.S. Название фигуры Земли – геоид – предложено немецким ученым –физиком И.Б. Листигом (1808 – 1882 г.г.). При картографировании земной поверхности, на основании многолетних исследований ученых, сложную фигуру геоида без ущерба для точности, заменяют математически более простой – эллипсоидом вращения . Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.
Эллипсоид вращения близко подходит к телу геоида (уклонение не превышает 150 метров в некоторых местах). Размеры земного эллипсоида определялись многими учеными мира.
Фундаментальные исследования фигуры Земли, выполненные русскими учеными Ф.Н. Красовским и А.А. Изотовым, позволили развить идею о трехосном земном эллипсоиде с учетом крупных волн геоида, в результате были получены его основные параметры.
В последние годы (конец XX и начало XXI в.в.) параметры фигуры Земли и внешнего гравитационного потенциала определены с использованием космических объектов и применением астрономо–геодезических и гравиметрических методов исследований так надежно, что теперь речь идет об оценке их измерений во времени.
Трехосный земной эллипсоид, характеризующий фигуру Земли, подразделяют на общеземной эллипсоид (планетарный), подходящий для решения глобальных задач картографии и геодезии и референц – эллипсоид, который используют в отдельных регионах, странах мира и их частях. Эллипсо́ид враще́ния (сферо́ид) - это поверхность вращения в трёхмерном пространстве, образованная при вращении эллипса вокруг одной из его главных осей. Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.

Геоид - фигура Земли, ограниченная уровенной поверхностью потенциала силы тяжести, совпадающей в океанах со средним уровнем океана и продолженной под континенты (материки и острова) так, что эта поверхность всюду перпендикулярна направлению силы тяжести. Поверхность геоида более сглажена, чем физическая поверхность Земли.

Форма геоида не имеет точного математического выражения, и для построения картографических проекций подбирается правильная геометрическая фигура, которая мало отличается от геоида. Лучшим приближением геоида служит фигура, получающаяся в результате вращения эллипса вокруг короткой оси (эллипсоид)

Термин «геоид» был предложен в 1873 году немецким математиком Иоганном Бенедиктом Листингом для обозначения геометрической фигуры, более точно, чем эллипсоид вращения, отражающей уникальную форму планеты Земля.

Крайне сложная фигура - геоид. Она существует лишь теоретически, однако на практике ее нельзя ни пощупать, ни увидеть. Можно представить себе геоид в виде поверхности, сила земного притяжения в каждой точке которой направлена строго вертикально. Если бы наша планета была правильным шаром, заполненным равномерно каким-либо веществом, то отвес в любой ее точке смотрел бы в центр шара. Но ситуация осложняется тем, что неоднородной является плотность нашей планеты. В одних местах имеются тяжелые горные породы, в других пустоты, горы и впадины разбросаны по всей поверхности, так же неравномерно распределены равнины и моря. Все это меняет в каждой конкретной точке гравитационный потенциал. В том, что форма земного шара - геоид, виноват также эфирный ветер, который обдувает нашу планету с севера.