Опровержение "Парадокса Монти Холла" (мнимое опровержение, как выяснилось). Для всех и обо всем Разбор парадокса Монти Холла при другом поведении ведущего

September 19th, 2013

Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой - один доллар, в третьей - 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей - Кадиллак.

Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье). Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать «самое понятное» объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется «не изменять своего выбора») или открыть две другие (в старой формулировке это как раз и будет «изменить выбор». Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия «показал козу», никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать «спасибо» ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал «не ту» дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое «наивное» доказательство. Пусть тот, кто стоит на своем выборе, называется «Упрямым», а тот, кто следует указаниям ведущего, зовется «Внимательным». Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Монти Холл, продюсер и ведущий шоу Let’s Make a Deal с 1963-го по 1991 год.

В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 - то есть 60%

Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 - то есть примерно 36%

Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 1 %.

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода Более формально сценарий игры может быть описан c помощью дерева принятия решений. В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Если же вам непонятно все равно, плюньте на формулы и просто проверьте всё статистически . Еще один вариант объяснения:

  • Игрок, чья стратегия заключалась бы в том, чтобы каждый раз менять выбранную дверь, будет проигрывать только в том случае, если он изначально выбирает дверь, за которой находится автомобиль.
  • Поскольку вероятность выбрать автомобиль с первой попытки составляет один к трём (или 33%), то шанс не выбрать автомобиль, если игрок будет менять свой выбор, также равен один к трём (или 33%).
  • Это означает, что игрок, который использовал стратегию менять дверь, выиграет с вероятностью 66 % или два к трём.
  • Это удвоит шансы на выигрыш игрока, чья стратегия - каждый раз не менять свой выбор.

Всё ещё не верите? Предположим, что вы выбрали дверь №1. Здесь представлены все возможные варианты того, что может произойти в этом случае.

Несчастны те люди, кто не умеет программировать хотя бы на уровне формул Excel! Например, им всегда будет казаться, что парадоксы теории вероятностей – это причуды математиков, неспособных понимать реальную жизнь. Между тем, теория вероятностей как раз-таки моделирует реальные процессы, в то время как человеческая мысль часто не может в полном объеме осознать происходящее.

Возьмем парадокс Монти Холла, приведу здесь его формулировку из русской Википедии:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

(при этом участнику игры заранее известны следующие правила:
  1. автомобиль равновероятно размещён за любой из 3 дверей;
  2. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  3. если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью)

На первый взгляд, шансы не должны измениться (простите, для меня это уже давно не парадокс, и я уже не могу придумать неверного объяснения, почему шансы не изменятся, которое на первый взгляд смотрелось бы логичным).

Обычно рассказчики этого парадокса начинают пускаться в сложные рассуждения или заваливать читателя формулами. Но если вы хоть чуточку умеете программировать, вам это не нужно. Вы можете провести моделирующие эксперименты, и посмотреть, как часто вы выигрываете или проигрываете при той или иной стратегии.

Действительно, что такое вероятность? Когда говорят «при данной стратегии, вероятность выигрыша 1/3» – это означает, что если вы проведете 1000 экспериментов, то примерно в 333 из них вы выиграете. Т.е., по-другому, шансы «1 из 3» – это в буквальном случае один из трех экспериментов. «Вероятность 2/3» – это точно так же буквально в двух случаях из трех.

Так вот, проведем эксперимент Монти Холла. Один эксперимент легко укладывается в одну строчку Excel-таблицы: вот она (файл стоит скачать, чтобы видеть формулы), приведу здесь описание по столбцам:

A. Номер эксперимента (для удобства)

B. Генерируем целое случайное число от 1 до 3. Это будет дверь, за которой спрятан автомобиль

C-E. для наглядности я разместил в этих ячейках «коз» и «автомобили»

F. Теперь мы выбираем случайную дверь (на самом деле можно выбирать все время одну и ту же дверь, т.к. случайности в выборе двери для автомобиля уже достаточно для модели – проверьте!)

G. Ведущий теперь выбирает дверь из двух оставшихся, чтобы открыть ее вам

H. И вот тут самое главное: он не открывает дверь, за которой автомобиль, а в случае, если вы изначально показали на дверь с козой, открывает другую единственно возможную дверь с козой! В этом его подсказка для вас.

I. Ну что ж, теперь посчитаем шансы. Пока не будем менять дверь – т.е. посчитаем случаи, когда столбец B равен столбцу F. Пусть будет “1” – выиграли, и “0” – проиграли. Тогда сумма ячеек (ячейка I1003) – это количество выигрышей. Должно получиться число, близкое к 333 (всего мы делаем 1000 экспериментов). Действительно, нахождение автомобиля за каждой из трех дверей – это равновероятное событие, значит выбирая одну дверь, шанс угадать – один из трех.

J. Маловато будет! Поменяем наш выбор.

K. Аналогично: «1» – выигрыш, «0» – проигрыш. И что же в сумме? А в сумме получается число, равное 1000 минус число из ячейки I1003, т.е. близкое к 667. Вас это удивляет? А разве что-то другое могло получиться? Ведь других закрытых дверей больше нет! Если изначально выбранная дверь дает вам выигрыш в 333 случаях из 1000, то другая дверь должна давать выигрыш во всех оставшихся случаях!


Понимаете теперь меня, почему я тут не вижу парадокса? Если есть две и только две взаимоисключающие стратегии, и одна дает выигрыш c вероятностью p, то другая должна давать выигрыш с вероятностью 1-p, какой же это парадокс?

Если вам понравился этот пост, попробуйте теперь построить аналогичный файл для парадокса мальчиков и девочек в следующей формулировке:

Мистер Смит отец двоих детей. Мы встретили его, прогуливающегося по улице с маленьким мальчиком, которого он с гордостью представил нам, как своего сына. Какова вероятность того, что другой ребёнок мистера Смита тоже мальчик?

С приветом из солнечного Вьетнама! :) Приезжайте к нам работать! :)

Загадка Монти Холла

В поисках автомобиля, игрок выбирает дверь 1. Тогда ведущий открывает 3-ю дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь 2. Стоит ли ему это делать?

Парадо́кс Мо́нти Хо́лла - одна из известных задач теории вероятностей , решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание гипотетической игры , основанной на американском телешоу «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в году в журнале Parade Magazine , звучит следующим образом:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль , за двумя другими дверями - козы . Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Хотя данная формулировка задачи является наиболее известной, она несколько проблематична, поскольку оставляет некоторые важные условия задачи неопределенными. Ниже приводится более полная формулировка.

При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен. Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей , поэтому описанная задача и называется парадоксом Монти Холла .

Задача и решение

Более точная формулировка задачи

Наиболее распространённая формулировка задачи, опубликованная в журнале Parade , к сожалению, не вполне точна, поскольку оставляет неопределёнными несколько существенных условий. Более полная и точная формулировка задачи выглядит примерно так:

Представьте, что вы стали участником игры, в которой вы находитесь перед тремя дверями. Ведущий, о котором известно, что он честен , поместил за одной из дверей автомобиль, а за двумя другими дверями - по козе. У вас нет никакой информации о том, что за какой дверью находится. Ведущий говорит вам: «Сначала вы должны выбрать одну из дверей. После этого я открою одну из оставшихся дверей, за которой находится коза. Затем я предложу вам изменить свой первоначальный выбор и выбрать оставшуюся закрытую дверь вместо той, которую вы выбрали вначале. Вы можете последовать моему совету и выбрать другую дверь, либо подтвердить свой первоначальный выбор. После этого я открою дверь, которую вы выбрали, и вы выиграете то, что находится за этой дверью.»

Вы выбираете дверь номер 3. Ведущий открывает дверь номер 1 и показывает, что за ней находится коза. Затем ведущий предлагает вам выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы последуете его совету?

В данной задаче также неявно предполагается, что открытие ведущим двери с козой не несёт никакой информации о том, что находится за дверью, которую сначала выбрал игрок. Наиболее простой способ добиться этого - потребовать, чтобы в случае, когда автомобиль находится за дверью, выбранной игроком, ведущий открывал одну из оставшихся дверей с козами обязательно случайным образом.

Вначале вероятность того, что участник попадёт на автомобиль равна 1/3. После того как ведущий открывает дверь, большинство людей считают что она должна быть равна 1/2, но это не так. Ведущий знает, где находится автомобиль, и поэтому не открывает дверь с автомобилем. И вероятность была бы 1/2 только тогда, когда ведущий бы не знал положение призов, и тогда бы открытие двери ничего бы не меняло.

Наиболее существенным дополнением по сравнению с приведённой выше формулировкой здесь является то, что игрок до начала игры знает, что после его выбора ведущий в любом случае откроет дверь с козой и в любом случае предложит игроку изменить свой выбор, то есть совершение данных действий ведущим не несёт никакой информации о том, правильным или неправильным был первоначальный выбор игрока.

Решение

Правильным ответом к этой задаче является следующее: да, шансы выиграть автомобиль увеличиваются в два раза, если игрок будет следовать совету ведущего и изменит свой первоначальный выбор.

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие – принятие решения игроком о смене двери, второе событие – открытие лишней двери. Это допустимо, т.к. открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье).

Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами (sic!). Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери (sic!). Одну открывает ведущий, а вторую сам игрок.

Ключи к пониманию

Несмотря на простоту объяснения этого явления, множество людей интуитивно полагают, что вероятность выигрыша не меняется при изменении игроком своего выбора. Обычно невозможность изменения вероятности выигрыша мотивируется тем, что при вычислении вероятности происшедшие в прошлом события не имеют значения, как это происходит, например, при подбрасывании монетки - вероятность выпадения орла или решки не зависит от того, сколько раз до этого выпал орёл или решка. Поэтому многие считают, что в момент выбора игроком одной двери из двух уже не имеет значения, что в прошлом имел место выбор одной двери из трёх, и вероятность выиграть автомобиль одинаковая как при изменении выбора, так и при оставлении первоначального выбора.

Однако, хотя такие соображения верны в случае подбрасывания монетки, они верны не для всех игр. В данном случае должно быть проигнорировано открытие двери ведущим . Игрок по существу выбирает между той одной дверью, которую он выбрал сначала, и остальными двумя - открытие одной из них служит лишь для отвлечения внимания игрока. Известно, что имеется один автомобиль и две козы. Первоначальный выбор игроком одной из дверей делит возможные исходы игры на две группы: либо автомобиль находится за дверью, выбранной игроком (вероятность этого 1/3), либо за одной из двух других (вероятность этого 2/3). При этом уже известно, что в любом случае за одной из двух оставшихся дверей находится коза, и, открывая эту дверь, ведущий не даёт игроку никакой дополнительной информации о том, что находится за выбранной игроком дверью. Таким образом, открытие ведущим двери с козой не меняет вероятности (2/3) того, что автомобиль находится за одной из оставшихся дверей. А поскольку уже открытую дверь игрок не выберет, то вся эта вероятность оказывается сосредоточена в том событии, что автомобиль находится за оставшейся закрытой дверью.

Более интуитивно понятное рассуждение: Пусть игрок действует по стратегии «изменить выбор». Тогда проиграет он только в том случае, если изначально выберет автомобиль. А вероятность этого - одна треть. Следовательно, вероятность выигрыша: 1-1/3=2/3. Если же игрок действует по стратегии «не менять выбор», то он выиграет тогда и только тогда, когда изначально выбрал автомобиль. А вероятность этого - одна треть.

Другая частая причина трудного понимания решения этой задачи состоит в том, что нередко люди представляют себе немного другую игру - когда заранее неизвестно, будет ли ведущий открывать дверь с козой и предлагать игроку изменить свой выбор. В этом случае игрок не знает тактики ведущего (то есть, по существу, не знает всех правил игры) и не может сделать оптимальный выбор. Например, если ведущий будет предлагать смену варианта лишь в случае, когда игрок изначально выбрал дверь с автомобилем, то, очевидно, игрок должен всегда оставлять первоначальное решение без изменения. Именно поэтому важно иметь в виду точную формулировку задачи Монти Холла.(Хотя, даже при таком варианте, правильной стратегией будет смена выбора двери (при условии, что игрок не знает «хитрости» ведущего). Так как в этом случае проигрыш будет означать реализацию вероятности 1/3.)

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 - козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы - они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей - 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними - 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 0.01 %.

Дерево принятия решений

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода

Более формально сценарий игры может быть описан c помощью дерева принятия решений .

В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Суммарная вероятность того, что изменение выбора приведёт к выигрышу, эквивалентна сумме вероятностей первых двух исходов, то есть . Соответственно, вероятность того, что отказ от изменения выбора приведёт к выигрышу, равна .

Существует простой способ убедиться в том, что изменение первоначального выбора приводит к выигрышу в двух случаях из трёх в среднем. Для этого можно сымитировать игру, описанную в задаче Монти Холла, с помощью игральных карт . Один человек (раздающий карты) при этом играет роль ведущего Монти Холла, а второй - роль игрока. Для игры берутся три карты, из которых одна изображает дверь с автомобилем (например, туз пик), а две других, одинаковых (например, две красные двойки) - двери с козами.

Ведущий выкладывает три карты рубашкой вверх, предлагая игроку взять одну из карт. После того, как игрок выберет карту, ведущий смотрит в две оставшиеся карты и открывает красную двойку. После этого открываются карты, оставшиеся у игрока и у ведущего, и если выбранная игроком карта - туз пик, то записывается очко в пользу варианта, когда игрок не меняет свой выбор, а если у игрока оказывается красная двойка, а у ведущего остаётся туз пик, то записывается очко в пользу варианта, когда игрок меняет свой выбор. Если провести множество таких раундов игры, то соотношение между очками в пользу двух вариантов достаточно хорошо отразит соотношение вероятностей этих вариантов. При этом оказывается, что число очков в пользу смены первоначального выбора примерно в два раза больше.

Такой эксперимент позволяет не только убедиться в том, что вероятность выигрыша при изменении выбора в два раза больше, но и хорошо иллюстрирует, почему так происходит. В тот момент, когда игрок выбрал себе карту, уже определено , находится ли в его руке туз пик или нет. Дальнейшее открытие ведущим одной из своих карт не меняет ситуации - игрок уже держит карту в руке, и она остаётся там независимо от действий ведущего. Вероятность же для игрока выбрать туз пик из трёх карт равна, очевидно, 1/3, и, таким образом, вероятность его не выбрать (и тогда игрок выиграет, если изменит первоначальный выбор) равна 2/3.

Доказательство с помощью таблицы

При проведении большого числа экспериментов машина должна обнаруживаться за каждой из дверей одинаковое количество раз, то есть очень близко к 1/3 от общего количества.

дверь 1 дверь 2 дверь 3
Выбор Машина Коза Открыта коза
Выбор Машина Открыта коза
Выбор Открыта коза Машина

По законам распределения вероятности вы выберете неправильную дверь в 2 случаях из 3. Это означает, что в 2 из 3 случаев вы получите машину просто изменив решение. Таблица показывает, что вы, скорее всего, ошибётесь при первом выборе и в этом случае вы попадаете в две другие строки таблицы. А здесь уже вам покажут, какую дверь нужно выбрать.

Проблема трёх заключенных

Другая формулировка парадокса была представлена Мартином Гарднером в колонке Математические игры , которую он вёл в журнале Scientific American , в .

Трое заключенных A , B и C приговорены к смертной казни, однако известно что один будет помилован. Приговор запрещает сообщать преступнику, будет ли он помилован или нет. A уговаривает охранника сказать, кого из двух других заключенных казнят. Так как вопрос не касается A , охранник решается сообщить, что казнят B . Как изменились вероятности казни A и C ? Или, проводя аналогию с проблемой Монти Холла, следует ли A поменяться местами с С , если у него есть такая возможность?

Ответ

В таблице приведены вероятности того, кто из заключенных будет помилован, до и после сообщения охранника.

В декабре 1963 года на американском телеканале NBC впервые вышла программа Let’s Make a Deal («Заключим сделку!»), в которой участники, выбранные из зрителей в студии, торговались друг с другом и с ведущим, играли в небольшие игры или просто угадывали ответ на вопрос. В конце передачи участники могли сыграть в «сделку дня». Перед ними было три двери, про которые было известно, что за одной из них - Главный Приз (например, автомобиль), а за двумя другими - менее ценные или вовсе абсурдные подарки (например, живые козы). После того как игрок делал свой выбор, ведущий программы Монти Холл (Monty Hall) открывал одну из двух оставшихся дверей, показывая, что за ней Приза нет и давая участнику порадоваться тому, что он сохраняет шансы на выигрыш.

В 1975 году учёный из Калифорнийского университета Стив Селвин (Steve Selvin) задался вопросом о том, что будет, если в этот момент, после открытия двери без Приза, предложить участнику поменять свой выбор. Изменятся ли в этом случае шансы игрока получить Приз, а если да, то в какую сторону? Он отправил соответствующий вопрос в виде задачи в журнал The American Statistician («Американский статистик»), а также - самому Монти Холлу, который дал на него довольно любопытный ответ. Несмотря на этот ответ (а может, и благодаря ему) задача получила распространение под именем «задача Монти Холла».

Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

«Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?»


После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу.

Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

  1. автомобиль равновероятно размещён за любой из 3 дверей;
  2. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  3. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.
Подсказка

Попробуйте рассмотреть людей, выбравших в одном и том же случае (то есть когда Приз находится, например, за дверью №1) разные двери. Кто будет в выигрыше от изменения своего выбора, а кто - нет?

Решение

Как и было предложено в подсказке, рассмотрим людей, сделавших разный выбор. Предположим, что Приз находится за дверью №1, а за дверями №2 и №3 - козы. Пусть у нас есть шесть человек, причём каждую дверь выбрали по два человека, и из каждой пары один впоследствии изменил решение, а другой - нет.

Заметим, что выбравшим дверь №1 Ведущий откроет одну из двух дверей на свой вкус, при этом, независимо от этого, Автомобиль получит тот, кто не изменит своего выбора, изменивший же свой первоначальный выбор останется без Приза. Теперь посмотрим на выбравших двери №2 и №3. Поскольку за дверью №1 стоит Автомобиль, открыть её Ведущий не может, что не оставляет ему выбора - он открывает им двери №3 и №2 соответственно. При этом изменивший решение в каждой паре в результате выберет Приз, а не изменивший - останется ни с чем. Таким образом, из троих людей, изменивших решения, двое получат Приз, а один - козу, в то время как из троих, оставивших свой изначальный выбор неизменным, Приз достанется лишь одному.

Необходимо отметить, что если бы Автомобиль оказался за дверью №2 или №3, результат был бы тем же, изменились бы лишь конкретные победители. Таким образом, предполагая, что изначально каждая дверь выбирается с равной вероятностью, мы получаем, что меняющие свой выбор выигрывают Приз в два раза чаще, то есть вероятность выигрыша в этом случае больше.

Посмотрим на эту задачу с точки зрения математической теории вероятностей. Будем предполагать, что вероятность изначального выбора каждой из дверей одинакова, равно как и вероятность нахождения за каждой из дверей Автомобиля. Кроме того, полезно сделать оговорку, что Ведущий, когда он может открыть две двери, выбирает каждую из них с равной вероятностью. Тогда окажется, что после первого принятия решения вероятность того, что Приз за выбранной дверью, равна 1/3, в то время как вероятность того, что он - за одной из двух других дверей, равна 2/3. При этом, после того как Ведущий открыл одну из двух «невыбранных» дверей, вся вероятность 2/3 приходится лишь на одну из оставшихся дверей, создавая тем самым основание для смены решения, которая увеличит вероятность выигрыша в 2 раза. Что, конечно, его нисколько не гарантирует в одном конкретном случае, но приведёт к более удачным результатам в случае многократного повторения эксперимента.

Послесловие

Задача Монти Холла - это не первая из известных формулировок данной проблемы. В частности, в 1959 году Мартин Гарднер опубликовал в журнале Scientific American аналогичную задачу «о трёх узниках» (Three Prisoners problem) со следующей формулировкой: «Из трёх узников одного должны помиловать, а двоих - казнить. Узник A уговаривает стражника назвать ему имя того из двух других, которого казнят (любого, если казнят обоих), после чего, получив имя B, считает, что вероятность его собственного спасения стала не 1/3, а 1/2. В то же время, узник C утверждает, что это вероятность его спасения стала 2/3, а для A ничего не изменилось. Кто из них прав?»

Однако и Гарднер был не первым, так как ещё в 1889 году в своём «Исчислении вероятностей» французский математик Жозеф Бертран (не путать с англичанином Бертраном Расселом!) предлагает похожую задачу (см. Bertrand"s box paradox): «Есть три ящика, в каждом из которых лежат две монеты: две золотых в первом, две серебряных во втором, и две разных - в третьем. Из наугад выбранного ящика наугад вытащили монету, которая оказалась золотой. Какова вероятность того, что оставшаяся монета в ящике - золотая?»

Если понять решения всех трёх задач, легко заметить схожесть их идей; математически же все их объединяет понятие условной вероятности, то есть вероятности события A, если известно, что событие B произошло. Простейший пример: вероятность того, что на обычном игральном кубике выпала единица, равна 1/6; однако если известно, что выпавшее число - нечётно, то вероятность того, что это - единица, будет уже 1/3. Задача Монти Холла, как и две другие приведённые задачи, показывают, что обращаться с условными вероятностями нужно аккуратно.

Эти задачи также нередко называют парадоксами: парадокс Монти Холла, парадокс ящиков Бертрана (последний не следует путать с настоящим парадоксом Бертрана, приведённым в той же книге, который доказывал неоднозначность существовавшего на тот момент понятия вероятности) - что подразумевает некоторое противоречие (например, в «парадоксе Лжеца» фраза «это утверждение - ложно» противоречит закону исключённого третьего). В данном случае, однако, никакого противоречия со строгими утверждениями нет. Зато есть явное противоречие с «общественным мнением» или просто «очевидным решением» задачи. Действительно, большинство людей, глядя на задачу, полагают, что после открытия одной из дверей вероятность нахождения Приза за любой из двух оставшихся закрытыми равна 1/2. Тем самым они утверждают, что нет разницы, соглашаться или не соглашаться изменить своё решение. Более того, многие люди с трудом осознают ответ, отличный от этого, даже после того, как им было рассказано подробное решение.

Ответ Монти Холла Стиву Селвину

Г-ну Стиву Селвину,
доценту биостатистики,
Калифорнийский университет, Беркли.

Уважаемый Стив,

Благодарю Вас за то, что прислали мне задачу из «Американского статистика».

Хотя я и не изучал статистику в университете, я знаю, что цифры всегда можно использовать в свою пользу, если бы я хотел ими манипулировать. Ваши рассуждения не учитывают одного существенного обстоятельства: после того как первый ящик оказывается пустым, участник уже не может поменять свой выбор. Так что вероятности остаются теми же: один из трёх, не так ли? Ну и, конечно, после того как один из ящиков оказывается пустым, шансы не становятся 50 на 50, а остаются теми же - один из трёх. Участнику только кажется, что, избавившись от одного ящика, он получает больше шансов. Вовсе нет. Два к одному против него, как было, так и осталось. И если Вы вдруг придёте ко мне на шоу, правила останутся теми же и для Вас: никакой смены ящиков после выбора.